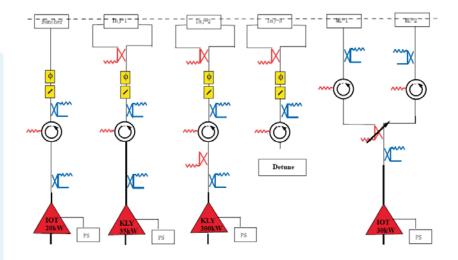
RF Source of cERL in KEK


S. Fukuda KEK

Energy Reduced cERL Plan

RF Frequency=1.3GHz (Q_L=2x10⁷) IOTs will be used 30kW CW IOT x 4 9-Cell-Cavity x 4 (Q_L=2x10⁷) IOTs will be used 30kW CW Klystron x 3 9-Cell-Cavity x 4 (Q_L=1.67x10⁹) (Q_L=1.67x10⁹)

Original Plan of cERL RF

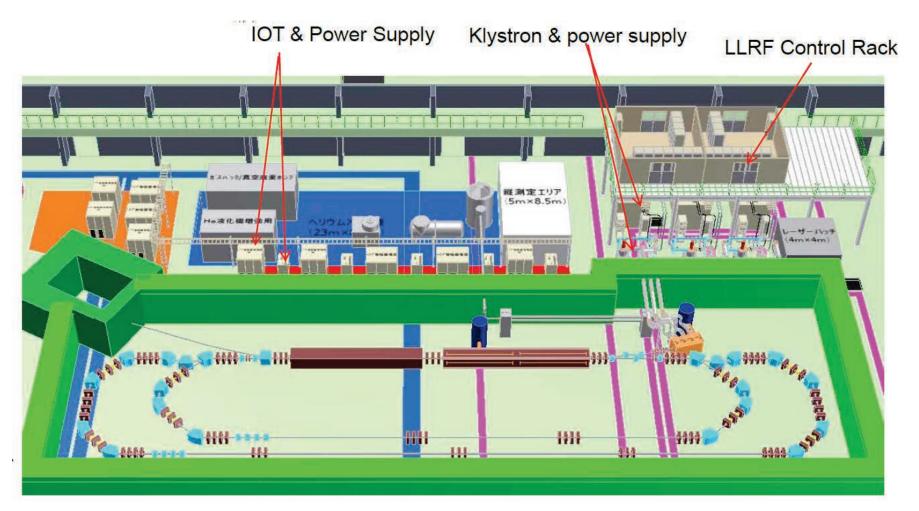
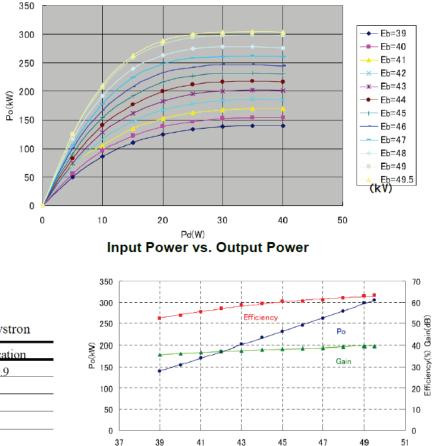

Required stability : 0.1%rms (Amplitude), 0.1 degree rms (phase) Goal Stability of ERL : 0.01%rms(Amplitude),0.01 degree rms(phase)

Table 1: RF parameters for the cERL of the reduced energy scheme

Item	Unit	Buncher	Inj-1	Inj-2	Inj-3	ML-1	ML-2
Structure		NC	SC	SC	SC	SC	SC
Gradient	MV	0.14	1.5	3.5		15	15
Ql			8x10 ⁵	2x10 ⁶	Detuned	2x10 ⁷	2x10 ⁷
Beam phase	degree	-90	-15 to -30	-10		0	0
Power Required	kW	4.5	20	55		11	11
Power Output	kW	6.2	27	76		30	
RF source		IOT	Klystron	klystron			ют
Power Available	kW	20	35	300			

Layout of cERL and RF Source

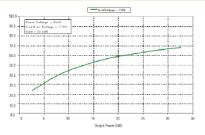

300kW CW Klystron

Toshiba E37750 Klystron

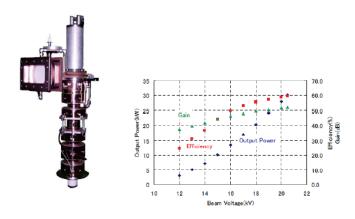
Table 2: Specifications of 300kW CW Klystron

Item	Unit	Specification
Perveance	$\mu A/V^{3/2}$	0.89+-0.9
Beam voltage	kV	52>
Beam Current	А	11>
Frequency	MHz	20
Klystron Type		Diode
Output Power	kW	>270 (Goal 300)
Efficiency at Sat.	%	>50 (Goal 60)
Gain at Saturation	dB	>37
Cavity Number		5
Cooling		Water Cooling

Applied Voltage vs. Output Power, Gain and Efficiency


Eb(kV)

30kW RF Source


CPI VKL-9130 IOT

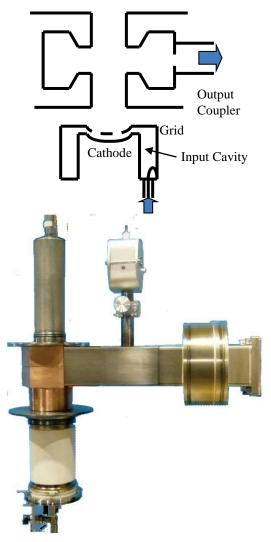
Frequency	1300 MHz
Output Power	30 kW
Beam Voltage	35 kV
Beam Current	1.4 A
Drive Power	< 500 W
-1dB Bandwidth	> 2 MHz
Gain	> 20 dB
Efficiency	> 60

Toshiba E3750 Klystron

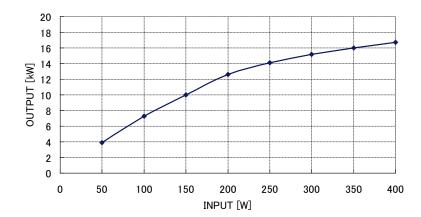
For buncher section

20 kW CW 1.3 GHz IOT Amplifier

Ratings	Symbol	Min.	Max.
Heater Voltage	V	5	7
Heater Current (Operating)	A	20	30
Heater Current (Surge)	A		60
Heater Warm-up Time	Seconds	300	-
Beam Voltage	kV	28	36
Beam Current	А		2.0
Idle Current	A	0.0	0.5
Body Current	mA		60
Solenoid Current	A	20	30
Collector Dissipation	kW		55
Load VSWR		212229	1.5:1
Bias Voltage (with respect to cathode)	V	-50	-150
Grid Current	mA		±150
Ion Pump Current (Beam On)	μA		20
Ion Pump to Cathode Voltage	kV	3	4
Bandwidth (-1 dB)	MHz	3.0	
Bandwidth (-3 dB)	MHz	5.0	
Gain with 150 mA of idle current	dB	20.0	
Output Power	kW		25
Beam Efficiency @ 20 kW	%	43	

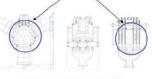

Mechanical Specifications Mechanical Outline IOT See Back Mounting Position Collector Down Electromagnet Focusing Cooling Maximum Inlet Pressure 60 psi Maximum Inlet Water Temp. 50°C Maximum Outlet Water Temp. 70°C 10 gpm Minimum Collector Flow RO or DI Water Collector Pressure Drop 40 psi Minimum Body Flow RO or DI Water 1.0 gpm Minimum Window Flow RO or DI Water .5 gpm Air Flow to Input Cavity Mounted to Tube 70 cfm Air Pressure at Intake 20" Maximum Air Temp. @ Intake 60 °C 50 lbs. Weight (Approx.)

IOT Amplifier L-4445


Development of IOT

Mitsubishi Electric Corporation Communication Systems

- Higher efficiency for input RF modulation.
- First domestic IOT product.
- Grid development.
- Development of beam simulation with grid.
- New dielectric waveguide realize higher applied voltage.

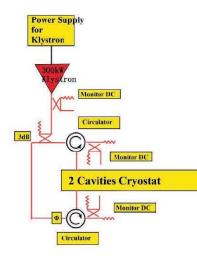


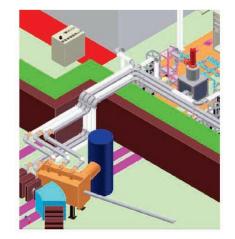
Power Distribution

150kW Circulator

Frequency	1300±5 MHz
Max. Power	150 kW CW
VSWR	<1.2 kV
Insertion Loss	<0.3 dB
Isolation	>20dB
Waveguide	WR-6f50
Cooling	Water Cooling
External Mag. Field	Permanent magnet

Four Layer


30kW Circulator



Technical Specification of the IsolatorWFHI3-2, 5MW Order RT-791

Premiency :	1.3GHz±5MHz:
Max. Pulse Power (forward) -	5MW;
Max. Pulse Power (reflected) -	5MW any phase:
Max. Average Power -	85kW; 5 MUX 1.5 ME * Spice 22 (SPA) 0
Pulse duration ·	<1,7ms;
Repetition Rate -	<10Hz;
Insertion Loss	<0.15dB at 1.3GHz; <0.2dB at bandwidth;
Isolation -	>30dB;
VSWR ·	<1,10 with full reflection at any phase
Case -	gas tight up to 3 bar, leakage <5ml/hour;
Gas -	SF6 up to 1,5 bar:
Cooling ·	deminiralized water,
	pressure <6 har,
	test pressure 12 bar.
	flow rate <10 l/min for the circulator
	flow rate <60 l/min for the load
Magnet system -	permanent magnets;

Power Distribution to Cryomodule

Future RF Source Candidate

• **RF Source for Injector**

CW 300kW or more higher RF source→klystron Power supply: need high efficiency power supply

• **RF Source for Main Linac**

Currently we use klystron and IOT for the cERL Cost of 20kW-class : 200k\$(P/S)+75k\$(IOT)

cf. If L-band semiconductor power source is cheaper than this, it will be the candidate for RF source.

There appears the high efficiency semiconductor power source. Price will be expected to be cheaper within there or four years later.