ERL'2011 at KEK, 2011 Oct. 20

1

Tuner Performance in S1-G Cryomodule

Eiji Kako (KEK, Japan) on behalf of S1-Global team

S1-Global Cryomodule

ERL'2011 at KEK, 2011 Oct. 20

.

International Collaboration for tuner tests

INFN-Milan (Italy) FNAL (USA) KEK (Japan)

.

ERL'2011 at KEK, 2011 Oct. 20

Three Types of Frequency Tuning System

4

ERL'2011 at KEK, 2011 Oct. 20

.

Main Design Parameters of Course Tuners

Parameter	Unit	Blade	Saclay	S. Jack
Range	kHz	600	500	900
Sensitivity @ 1.3 GHz	kHz / turn	25	20	15
	Hz / step	1.5	1	3

Tuning Stroke of Resonant Frequency

ERL'2011 at KEK, 2011 Oct. 20

.

Blade Tuner for FNAL Cavities

ERL'2011 at KEK, 2011 Oct. 20

.

Slide-Jack Tuner for KEK Cavities

ERL'2011 at KEK, 2011 Oct. 20

.

Main Parameters of Piezo Tuners

Cavity/Tuner	PZT Max Voltage, Capacitance	Max Static shift	Max dynamic shift	Normalized Ratio
C1-Blade	200 V, 4.1 µF (total pzt 1+2)	2650 Hz @ 200 V	1040 Hz @ 135 V	0.6
C2-Blade	200 V, 3.9 µF (total pzt 1+2)	560 Hz @ 100 V	590 Hz @ 100 V	1.1
C3-DESY	200 V, 2.0 µF (only pzt 2)	1010 Hz @ 200 V	1100 Hz @ 180 V	1.2
C4-DESY	200 V, 1.9 µF (only pzt 1)	1060 Hz @ 200 V	1170 Hz @ 170 V	1.3
A1-S.J cent.	1000 V, 0.19 μF	190 Hz @ 500 V	270 Hz @ 470 V	1.5
A2-S.J cent.	1000 V, 0.21 μF	350 Hz @ 500 V	450 Hz @ 470 V	1.4
A3-S.J lat.	1000 V, 0.20 μF	210 Hz @ 500 V	270 Hz @ 470 V	1.3
A4-S.J lat.	1000 V, 0.21 μF	450 Hz @ 500 V	450 Hz @ 470 V	1.1

E. Kako (KEK)

ERL'2011 at KEK, 2011 Oct. 20 .

Static DC-response by Piezo Tuner

ERL'2011 at KEK, 2011 Oct. 20 .

Dynamic Sin-pulse Response by Piezo Tuner (1)

11

ERL'2011 at KEK, 2011 Oct. 20

Dynamic Sin-pulse Response by Piezo Tuner (2)

SIN pulse response – All

ERL'2011 at KEK, 2011 Oct. 20

.

Compensation of Lorentz Detuning

by Piezo Tuner (2)

FNAL piezo control system

be part of NML -CM1 piezo control instrumentation);

-During operation LS algorithm able to

FNAL's Piezo Control System FNAL built and deliver to KEK LFD Compensation system: Hardware: 1,3GHz → 13MHz receivers (for cavities RF signals). 100MHz ADC for cavities RF signals, PXI DAQ system (Processor & FPGA), HV Piezo Drivers Software Matlab, LabView, FPGA codes. Algorithm: FNAL's Adoptive LS LFD Compensation Algorithm eveloped by Warnen Schappert)

Piezo ON

CALMENT OF

1000

1000

1500

1500

500

∆F=10Hz

2000

2500

Pf

ERL'2011 at KEK, 2011 Oct. 20 . E. Kako (KEK)

2000

2500

SUMMARY

- Each of the different types of tuning systems installed in the S1-Global cryomodule proved to be capable to accomplish the main goals.
- Statically cavity tuning with proper resolution to the target frequency was confirmed.
- Pulsed operation at maximum gradient with an active compensation of the Lorentz force detuning up to tens of Hz-level residual detuning was achieved.
 Enough performance margin in Lorentz force detuning compensation in view of ILC-level target gradients was demonstrated.