Cornell SRF Overview

- focusing on ERL fraction of SRF group -

Georg Hoffstaetter Cornell Physics Dept. / CLASSE

- 1) ERL Injector R&D, prototyping, and operation
- 2) ERL main linac R&D, prototyping, and technology transfer
- 3) Low Loss Research (For CW linacs, mostly ERL and Project-X)
- 4) High Voltage Research (Mostly for ILC)
- 5) New SRF materials with potential for high voltage and low loss.
- 6) Fundamental SRF properties theory and experiment
- 7) Storage ring SRF cavities operation and technology transfer
- 8) SRF related Beam Research:
 - a) Dark current in SRF linacs
 - b) X-ray background outside SRF linacs
 - c) Cavity focusing and ERL linac optics

Cornell University

Cornell's SRF R&D facilities -2-

• Strong research team:

3Prof, 4PhD, 7Eng/Tech, 4Grads

- RF measurement lab
- Clean room
- Chemical handling

CLASSE

Cornell's SRF R&D facilities -3-

- Precision coordinate measurement
- Scanning electron microscope, Auger analysis, SIMS
- Advanced m-Kelvin thermometry
- OST quench locator
- Questar optical inspection
- Helium recovery system
- Large 1450C high-vacuum furnaces

NSF Review of ERL and CHESS, Cornell 10-28-2011

Cavity Production at Newman Lab

CLASSE

Pushing the Envelope in Many Ways

SRF cavity: design for high beam current

RF input coupler: design for high power

HOM damper: design for strong HOM suppression

Frequency tuner: stabilize cavity length on nm scale

Module design: support high cryo loads and provide excellent alignment

Georg.Hoffstaetter@Cornell.edu

NSF Review of Eks. and CHESS, Cornell 10-28-2011

ERL Injector Module Assembly in Cornell's SRF group

ERL Injector Module Assembly in Cornell's SRF group

All done at CLASSE - No company could do this today !

ERL Injector Module Assembly in Cornell's SRF group

All done at CLASSE - No company could do this today !

ERL Injector Module Assembly in Cornell's SRF group

All done at CLASSE - No company could do this today !

Rebuilding and Improving the ERL Injector

Module Assembly at Newman Lab

Localization and elimination of magnetic error

SRF ERL Injector Cryomodule Re-Work (fall 2009 – spring 2010)

The first run period (July 2008 – August 2009) revealed lower than expected cavity Q_0 and HOM load absorber tiles charging -> beam steering.

Does the injector work?

- All components work well (after some initial hitches)
- Successfully accelerated beam currents of 25 mA
 - ✓ Transferred > 125 kW of RF power to the beam
 - ✓ Performance projected indicates that operation at >100 mA is possible

Milestones at Cornell's injector

Peak DC-power supply voltage: 750kV Peak DC-gun voltage: 440kV (of 500kV required with beam)

Peak DC-beam current: 25mA (up to brilliance mode spec) Peak bunched-beam current: 25mA with GaAs / 20mA with CsK₂Sb for 8h

Peak charge per bunch: 200pC (more than needed)

Typical bunch length: 2ps (up to spec)

Smallest normalized thermal emittance: 0.25 mm mrad/mm radius Smallest normalized emittance after injector at 80pC: 0.8 mm mrad For this gun, 0.5 mm mrad is theoretical limit ! This bunch in a 5GeV ERL would produce X-rays brighter than any ring today.

Largest SRF-injector cavity Q0: 1.e10 (of 2.e10 required) Largest injector-coupler power: 60kW (of 100kW required) Largest SRF-cavity voltage: 13MV/m (up to spec)

Cornell University

HOM Damping Workshop at Cornell

Cornell University International Workshop on Higher-Order-Mode Damping in Superconducting RF Cavities

October 11–13, 2010 701 Clark Hall, Cornell University

The workshop will be held on the beautiful upstate New York Cornell University campus. It will address different methods of damping Higher-Order-Modes in superconducting RF cavities.

Specific subjects of interest are: • RF absorbing materials • Antenna HOM absorbers • Beampipe HOM absorbers • Waveguide HOM absorbers • HOM simulation tools • HOM measurement methods

For information or to register, visit: www.lepp.cornell.edu/Events/HOM10

- ~40 participants
- From 15 different labs/ universities from Asia, Europe and U.S.

Cornell's HOM Beamline Absorber

Extensive research program to find absorber materials which

- are effective at 80 K
- and_absorb over the required wide frequency range (1 GHz to >100 GHz)
- Be vacuum compatible and radiation hard
 - Ferrites
 - Graphite loaded SiC
 - Carbon-nanotube loaded ceramics

Spherical carbon inclusions vs. CNTs

HOM Results from the Injector SRF Module

Yes, very well...

- HOM spectra measurements confirm excellent damping with typical Qs of a few 1000
- ✓ Operated injector SRF module with beam currents of 25 mA
 - Measured ΔT very small. → operation at
 >100 mA feasible (>10* previous record!)

^m 19:00:00 20:00:00 21:00:00 22:00:00 time

ERL Phase1B progress for SRF

- Engineering design of 7-cell cavity, dumbbells ready, v-test of 1st cavity in Sept.
- Engineering design of 8 HOM absorber, parts ready for brazing
- Concept design and quote for SC quadrupole/corrector/BPM package
- Horizontal test to evaluate midfield Q in early 2012
- Horizontal test with beam for HOM measurements in 2013
 - Incorporate a full-circumference heat sink to allow >500W dissipation @ 80K
 - New beamline flanges, variations of the "Zero Impedance Flange"

Phase 1B ERL protoyping: 2010-2014 Technology development for ERLs (anywhere)

- a) Continued Gun R&D
- b) High-brightness beam physics
- d) ERL Undulators
- e) Other X-ray beamline R&D

ERL cavity fabrication and measurement

Georg.Hoffstaetter@Cornell.edu

Second Sound Quench Location

Georg.Hoffstaetter@Cornell.edu

NSF Review of ERL and CHESS, Cornell 10-28-2011

From Specs to Finished Cavity ERL operation with >100 mA, minimize cryogenic wall losses, minimize cavity microphonics (modulation of cavity frequency by mechanical vibrations) **RF** design Mechanical design **Cavity fabrication**

Cornell University

upler Kick Studies in Cornell **RF** Optimization Cell shape optimization • ~20 free parameters • 1000's of eigenmodes • Impact of cell shape errors -> Supports beam current >400 mA (previous record: 10 mA) 3BU Parameter [<u>0</u>/cm²/GHz] 10^{0} Dipole mode damping calculated up to 10 GHz with realistic RF absorbers Worst mode limits beam current! 2 8 9 10 Frequency [GHz] LENCEPHOTOLIBRARY Georg.Hoffstaetter@Cornell.edu NSF Review of ERL and CHESS, Cornell 10-28-2011

Mechanical Design

Next Steps: 2011 – 2014

- Test of prototype cavity without and with beam (up to 100 mA)
- Build and test full main linac SRF cryomodule

Intern. CW Cryomodule Collaboration (Host lab: Daresbury

- Collaboration formulated in early 2005 to design and fabricate new CW cryomodule and validate with beam
- Dimensioned to fit on the ALICE ERL facility at Daresbury:
 - Same cryomodule footprint
 - Same cryo/RF interconnects
 - 'Plug Compatible' with existing cryomodule

Georg.Hoffstaetter@Cornell.edu

NSF Review of ERL and CHESS, Cornell 10-28-2011

Parameter	Target
Frequency (GHz)	1.3
Cryomodule Length	3.6m
R/Q (Ω)	762
E _{acc} (MV/m)	>20
E _{pk} /E _{acc}	2.23
H _{pk} /E _{acc}	46.9
CM Energy Gain	>32MeV
Q _o	>1010
Q _{ext}	4x10 ⁶ - 10 ⁸

See poster: TUPO013

Assembly preparations at Daresbury for the intern. CW cryomodule

DESY superstructures modified, changed to optimised end groups by Cornell

Eacc (MV/m)

Modified Saclay-II tuner with wider aperture and low voltage piezo cartridges.

Modified Cornell ERL injector coupler with a shortened cold section.

Cold couplers installed \Rightarrow awaiting HOM absorbers. Cryomodule to be ready later this year.

Cryomodule Cornell University

Collaborations

1) MOU with KEK (Tsukuba) who have adopted many of our parameters and designs for their hard x-ray ERL plans – includes SRF collaboration

2) MOU with HMZ (Berlin) on the development of LLRF control for ERLs and exchange of ERL SRF-injector designs.

3) Daresbury (UK): International SRF ERL cryomodule collaboration.

- 4) LBNL: Upcoming collaboration meeting on SRF for the NGLS soft x-ray FEL
- 5) JLAB: Joint measurements and exchange of students (SRF control and BBU)
- 6) TRIUMF (Vancouver): Exchange of ERL SRF hardware and injector designs.

END

38