Performance Evaluation of KEK Tuner

2011.10.20

Kazuhiro Enami, Takaaki Furuya, Hiroshi Sakai, Masato Sato, Kenji Shinoe, Kensei Umemori, Nobuhiko Sato (KEK, Ibaraki), Masaru Sawamura (JAEA, Ibaraki-ken), Enrico Cenni (Sokendai, Ibaraki)

Contents

- Introduction
- Study of Slide-Jack Mechanism
 - Basic Experiment
 - Micro Movement
- Study of Piezo actuator
 - Basic experiment
 - Influence of Load
- Summary

Purpose and Flow

- Purpose
 - Performance evaluation of KEK tuner used in ERL main linac.

- Flow
 - Evaluation under room temperature (This report)
 - Basic specification
 - Establishment of assembling method
 - Evaluation under cold temperature

Requested Specifications

- Cavity:
 - Frequency/Elongation: 300kHz/mm
 - Spring constant: 300kgf/mm
- Coarse adjustment: slide jack: about 3000um
- Micro adjustment : Piezo module: 80um
 - → Cantilever: 40um
 - →cooling,load:4um estimated
- Slide jack is requested to adjust with 1um accuracy
- Condition
 - Max 1000kgf loaded. But load to piezo module is half.
 - In superconductive condition

Study of Mechanism

Jack

- Smoothness of motion
- Influence of load
 - "load" is output of the load cell and half of total load

Slide-jack

Macro Motion Study (no Load)

- Tuner run the tuner 2 round-trip at full stroke
- Tuner moves lineally at macro level with no load

Micro motion Study (no Load)

 Reverse movement occurs at turning back point. Influence of Load (Waveform)

 Waveform was distorted under high road.

HICH ENERGY ACCELERATOR RESEARCH ORGANIZATION (Hysteresis Curve)

Turning back

- At turning back point, The tuner displaces in opposite direction to input.
- Displacement error depends on load.
 Displacement error is up to 2um at 200kgf loaded.
- Rotation of shaft does not transmit to slidejack correctly after turning back.
- To adjust at the accuracy of 1 um, It is necessary to avoid turning back point.

Torque vs Load

- We measured torque of the shaft.
- "Up" runs against load and "down" along load
- Torque has hysteresis.
- Max torque changes after re-assembling.

Summary of Slide Jack Mechanism

- The tuner moves lineally with ignorable tilt at the macro level.
- Max 2um backlash occurs at micro level at turning back point.
- Displacement error increase in high load
- To adjust at the accuracy of 1 um, It is necessary to avoid turning back point.
- Torque changes by misalignment of assembling.

Study of Piezo actuator

Motion of Piezo Actuator

- Piezo module moves smoothly.
- It has 80um stroke with no load.

Stroke of Tuner vs Load

- Stroke of the piezo module to 90% with 500kgf load. But...
- There is no correlation between stroke of the center of the tuner and load

Summary of Piezo Study

- Stroke of piezo module is 80um. It is enough.
- Tuner stroke by piezo module is 34um
- Stroke of piezo module decreased by 90% at 200 Hz.
- There is no correlation between stroke of center the tuner and load.
- Piezo actuator moves tuner smoothly enough.

Summary

- Slide jack mechanism
 - works well in macro revel.
 - Is not affected by load seriously.
 - causes 2um backlash. It is necessary to avoid this effect.
 - Misalignment in assembling increases shaft torque.
- Piezo actuator
 - has enough stroke and moves smoothly enough.
 - Influence of load and frequency is small enough.
- Tuner System
 - Is expected to work well to control in considering of backlash

Landscape

- Study about influence of misalignment in assembling
 - Establish the assembling method
 - Improvement of mechanism
- Low temperature experiment.

Additional data

Influence of Load

- Displacements are inverted at turning back point.
- The distance is correlate with load.

Frequency Study (1) Check of Resonance Frequency

Resonance frequency does not exist under200Hz

Frequency Study (2) Amplitude vs Frequecy

- Output(Sensor output/Amplifier output) is normalized by value at 1Hz
- Decrement of vibration amplitude is due to decrement of output of the amplifier
- Normalized amplitude decreased by 90% at 200 Hz

Discharge and countermeasure

- Piezo module discharged when 700V voltage was applied in this experiment.
- Alternative piezo module discharged too.
- Discharge occurred at the base of cable
- Degree of humidity was 70%.
- Discharge did not occurred up to 1000V at 30% humidity