

ALICE : current status and developments

Yuri Saveliev, on behalf of the ALICE team ASTeC, Daresbury Laboratory

ERL' 2011 Workshop, Tsukuba, Japan, October 16-21, 2011

The ALICE Facility @ Daresbury Laboratory

Accelerators and Lasers In Combined Experiments

An accelerator facility based on a superconducting ERL-prototype Operating in ER mode since 2008

ALICE: multifunctional facility

ER modes of operation

IR FEL (5.7-8um; 10-30W; ~3MW peak power) 27.5MeV; 60-100pC; 16.25MHz; 10Hz; 100us
THz source (15-20nJ per pulse; >10kW peak power) 26.0MeV; 60pC; 40.63MHz; 10Hz; 100us

•FELIS : Free Electron Laser Integration with Scanning Near-field Optical Microscope SNOM research programme is being transferred from Vanderbilt FEL; Collaboration with Liverpool Uni., Cockcroft Institute and CNR (Istituto di Struttura della Materia, Antonio Cricenti) 25.0-27.5MeV; 60pC; 16.25MHz; 10Hz; 10Ous

• THz for biological exps. in

Tissue Culture Lab.

- THz for quantum dots studies for novel solar cells
- Digital LLRF development

ALICE: multifunctional facility

Non-ER modes of operation (single bunch)

- EMMA : First NS FFAG demonstration 12MeV; 40pC; single bunch
- CBS : Compton back Scattering Experiment 30MeV; <100pC (completed in 2009)
- Electron beam / EM radiation interaction exps. 22.5MeV; 20pC
- Electron beam tomography
- Timing and synchronisation exps. (fibre-ring-laser-based system)

ALICE operates in a variety of modes differing in requirements for

- beam energies,
- bunch lengths,
- bunch charges,
- beam loading,
- energy spread etc.

ALICE

RF System	<mark>IR FEL</mark>	Beam transport system.
Superconducting booster + linac	Oscillator type FEL.	Triple bend achromatic arcs.
9-cell cavities. 1.3 GHz, ~10 MV/m.	Variable gap	First arc isochronous
Pulsed up to 10 Hz, 100 μ S bunch trains	Variable gap	Bunch compression chicane R ₅₆ = 28 cm

THz Radiation from ALICE

ALICE IR FEL

•Continuous tuning demonstrated 5.7-8.0 μ m, varying undulator gap.

•The FEL pulse duration has been inferred from the spectral width to be ~1 ps The peak power is therefore ~3 MW

•Single pass gain measured at ~20 %.

Undulator borrowed from Jefferson Lab

- period 27mm
- # periods 40
- min gap 12mm
- max K 1.0

	Jlab IR−Demo	ALICE
Frequency	74.85MHz	16.25MHz
Bunch charge	~70pC	~60-80pC
Mode	CW	10Hz; 100us
Beam energy	48MeV	27.6MeV
Wavelength	3.1um	8um
IR power	1720W	32/0.7=45mW (~700W if scaled)

Summary of ALICE SCRF modes of operation

BC1 gradient	~ 5.5MV (4.0MeV) FWDP = 11-12kW	Beam energy: Constant for all modes
BC1 off-crest phase	-10 to -20 deg	variable
BC2 gradient	2.8– 3.8 MV (2.5MeV) FWDP = 2–4kW	Beam energy: Constant for all modes
BC2 off-crest phase	+10 to +40 deg	+/- 90deg for some physics experiments
LC1 gradient	8-13 MV FWDP = 4-8kW	
LC1 off-crest phase	0 to +16 deg	
LC2 gradient	6.5–10 MV FWDP = 1.5–4kW	
LC2 off-crest phase	0 to +16deg	+180deg (deceleration) for EMMA injection
Beam energy (kinetic)	12.0 – 27.5MeV	[EMMA – FEL]
		Science & Technology Facilities Council

SRF Modules

2 x Stanford/Rossendorf cryomodules

•

•

- 1 Booster and 1 Main LINAC.
- Fabricated by ACCEL (now RI).

- JLab HOM coupler feedthrough design adopted for the LINAC module:
 - Sapphire loaded ceramic.
 - Higher power handling capability.

SRF System Specification

	Воо	ster	ERL Linac		
	BC1	BC2	LC1	LC2	
Eacc (MV/m)	4.8	2.9	12.9	12.9	
Q _o	5 x 10 ⁹	5 x 10 ⁹	5 x 10 ⁹	5 x 10 ⁹	
Q _e	7.4 x 10 ⁵	4.5 x 10 ⁵	7 x 10 ⁶	7 x 10 ⁶	
Power (kW)	32	20	6.7	6.7	
Power Source	2 x e2v	CPI	e2v	Thales	

0.1ms bunch trains @ 20 Hz repetition rate

High Power Cavity Validation

	Booster		Linac		
	Cavity 1	Cavity 2	Cavity 1	Cavity 2	
E _{acc} (MV/m)	18.9	20.8	17.1	20.4	
Q _o	5 x 10 ⁹				

Vertical Tests at DESY (Jul - Dec 2005)

Module Acceptance Tests at Daresbury (May - Sept 2007)

Max E _{acc} (MV/m)	10.8	13.5	12.8	16.4	
0	3.5 x 10 ⁹ @	1.3 x 10 ⁹ @	7.0 x 10 ⁹ @	1.9 x 10 ⁹ @	
	8.2 MV/m	11 MV/m	9.8 MV/m	14.8 MV/m	
Limitation	FE Quench	FE Quench	FE Quench	RF Power	

Warm Window (BC2 - 10/2008)

.

Don't understand the mechanism for the window failure, as the fundamental RF power was so low (~300 W):

- · Contamination on window surface?
- IOT instability?
- · Isolation vacuum was not interlocked.
- Cavity interlocks were not active at all, due to an inadvertant control system mode change immediately before testing.
- Improved protection procedures now in place.

LINAC Field Emission: Short-term Mitigation

Helium Processing

- LC1 improvement:
 - · Originally had FE onset at $^{\circ}6$ MV/m with an operating limit of $^{\circ}9$ MV/m.
 - Now have FE onset at 9 MV/m with an operating limit of 12 MV/m.
- LC2 improvement:
 - Unable to achieve any measurable improvement, still limited to ~12 MV/m operationally.
- Both \Rightarrow 10 mSv/hr (~10,000 hrs lifetime).

IOT HVPS Issues

- · Single HVPS:
 - Stored energy issues under fault conditions due to long HV cable runs (~60m)
 - Various types of IOTs have different requirements:
 - Filament settings
 - · Ion pump reference (cathode and body)
 - Wiring not standardised
- · Individual IOTs and complete system, earthing problems discovered.
- Reliable operation with:
 - Grid and heater supplies referenced at the HVPS
 - Spare HV cable along with ultra fast diodes used to control energy discharge
 - In-house grid supplies developed and installed:
 - · Improved output isolation to protect against reverse voltages
 - Grid protection diodes added at the power supply and IOT
 - Spark gaps added between cathode and grid at the IOT

IOTs issues

• e2v IOT116LS

- failure after ~18 months (outgassing, unable to sustain HV)

- CPI K51320W
 - loss of output power, the input cavity had moved off frequency : an improved input cavity supplied by CPI
- Thales TH713

- loss of output power; input stub very sensitive to movement

- CPI IOT
 - Gain Degradation (above \sim -14dBm)

Beam loading with Analogue LLRF Control

RF

- Analog LLRF card developed at ELBE FZR Rossendorf, proven technology but :
- Beamloading issues at 20pC; 81MHz (phase loop unable to cope)
- At 80pC; 81.25MHz would lead to a change in phase of 30 degrees and 16kW during 100us.

Improvements made

•Speeding up the response of the cards by changing component values (= gain optimisation; limited by becoming unstable)

HVPS droop compensation

• RF pulse reduction (from 20 ms \Rightarrow 4 ms) \rightarrow cryo and RF systems more stable

40 pC achieved at 30 MeV with stable LLRF (no beamloading)

See "additional slides"

Further improvements

• Variable burst selector in PI laser system installed : can operate at 16.25 MHz, beamloading reduced \rightarrow can now be compensated by LLRF \rightarrow 60pC; 16MHz Digital LLRF with feedforward

Phase Detector

compensation under development.

New Cryomodule Collaboration

Improved CM Capability

Fundamental ALICE benefits

Field emission free cavities:

- · Local radiation problems removed.
- Electronics replacements minimised.

Better cavity performance:

- · Higher gradients.
- Fewer cells \Rightarrow lower HOM contribution.

Higher power and adjustable input couplers:

- Larger beam currents and/or gradients.
- Reduced conditioning time and improved optimisation.
- Optimised tuning for FEL operation.

Piezo actuators for improved stability control:

· Requires digital LLRF system.

Improved thermal and magnetic shielding:

- · Reduced static/dynamic cryogenic loads.
- · Reduced operational costs.
- Reduced microphonics \Rightarrow improved stability. Able to repair the removed FE limited CM:

• Providing ALICE with a spare!

Target Cryomodule Specification

Parameter	Target		
Frequency (GHz)	1.3		
Number of Cavities	2		
Number of Cells per Cavity	7		
Cavity Length (m)	0.807		
Cryomodule Length (m)	3.6		
R/Q (Ω)	762		
$E_{acc}\left(MV/m\right)$	>20		
E_{pk}/E_{acc}	2.23		
H_{pk}/E_{acc}	46.9		
CM Energy Gain (MeV)	>32		
Q _o	>10 ¹⁰		
Q _{ext}	4 x 10 ⁶ - 10 ⁸		
Max Cavity FWD Power (kW)	20 SW		

ALICE SCRF: notes from the accelerator physicist

• RF and cryogenic systems reliability

- complex systems hence one of the major factors in beam time losses; even minor problems normally require calling out RF specialists

• RF Phase stability (slow phase drifts)

- makes machine optimisation and exps. very difficult (alleviated by developing the MO feedback system on ALICE)

- phase drifts in a "non-global" sense are still an issue.

• RF trips (mostly on cold and warm windows interlocks)

 sometime spurious; normally – RF switch back right away; cryo regains stability relatively quickly

• FE from linac: "kills" upstream / downstream screen cameras very quickly

Summary

- ALICE is a very multifunctional facility operating for a host of very different projects in both energy recovery and single bunch modes
- Major milestones achieved
 - Compton Back Scattering x-ray generation demonstrated
 - IR FEL lasing ; tuneable 5.7-8um; experiments with SNOM started;
 - coherent high power THz generation (biology and solid state physics experiments under way);
 - EMMA : first NS FFAG; injection & extraction, multiturn operation, and acceleration $12 \rightarrow 21$ MeV demonstrated.
- SRF cavities do not perform as expected \Rightarrow heavy FE > 7 MV/m.
- Helium processing and module shielding introduced.
- IOT problems relating to input circuit match with 1 IOT failure in 3 years.
- More problems with IOT HVPS, used to power all 5 IOT's:
 - HVPS and IOT system earthing critical.
 - Inconsistent IOT and HV configurations.
 - HVPS \sim 60m away \Rightarrow large HV cable stored energy.
- Injector cavity beamloading issues: improvements allow now to operate at ~60pC; 40MHz; or > 80pC; 16 MHz.
- Digital LLRF system development ongoing
- New CM development will improve ALICE performance considerably.

ALICE: current status and developments

Many thanks to Peter McIntosh and the whole ASTeC RF group for providing SCRF related slides

ADDITIONAL SLIDES

- Vertical tests
- Coupler heating
- Acceptance testing (2007)
- Helium processing (2010) schematics
- ALICE IOTs and IOTs issues

- ALICE LLRF system
- Digital LLRF development

ALICE: current status and developments

ADDITIONAL SLIDES

SRF Cavity Vertical Test Results @ DESY

Jul – Dec 2005

Science & Technology Facilities Council

Coupler Heating (LC2 - 6/2007)

actitics council

LC1 Acceptance Testing (9/2007)

Helium Processing (Jun 2010)

ALICE IOTs

<image/>		e2v IOT116LS		<section-header></section-header>		
	Parameters	CPI K51320W	e2v IOT116LS	Thales TH713	Units	
	Frequency	1.3	1.3	1.3	GHz	
	Max CW Power	30	16	20	kW	
	Gain	21	>20	20.9	dB	
	Beam Voltage	34	25	25	kV	
	Bandwidth	4.5	>4	>5	MHz	cience & Technology
	Efficiency	63.8	>60	60.4	%	icilities Council

IOT Issues – e2v IOT116LS

- Tube failure Dec 08:
 - After ~18 months
- Tube gassed up on application of filaments:
 - Tube unable to sustain HV.
- Failure believe to be due to the tube being operated with too high a quiescent current:
 - ⇒ Leading to a melted collector or body.
 - ⇒ Poisoned cathode due Cu deposition.
- Additional protection added to HV PLC:
 - DC current trip level included HV PLC program.
 - Individual IOT current monitoring.

IOT Issues – CPI K51320W

- Issues encountered with loss of output power.
- Discovered the input cavity had moved off frequency:
 - Difficult to tune and maintain a good input return loss.
- Similar issue encountered on spare IOT system.
- Resolved by tuning the input whilst tightening the screws on the input base plate.
- An improved input cavity supplied by CPI:
 - More robust coaxial connection.

CPI IOT Gain Degradation

IOT Issues - Thales TH713

- Issues encountered with loss of output power.
- Input stub very sensitive to movement:
 - Poor input match.

Science & Technology Facilities Council

ALICE LLRF System

Digital LLRF Developments

- LLRF4 board (developed by Larry Doolittle at LBNL) used as the basis for the design.
- FPGA software written using VHDL, Matlab and Simulink.
- Supervision and control of the system performed by a Labview VI, which also implements adaptive feed forward for beamloading compensation.
- Labview system interfaces with the ALICE EPICS control system.

 System developed and implemented in ~12 months.

Digital Control Process

Operational Performance

- The Digital LLRF system been operated on the ALICE NC buncher cavity.
- The system set up and locked within 10 min:
 - Short term stability better than the existing analogue system (0.02 degrees rms phase error).
 - Long term stability is limited by temperature drifts within the analogue front end.
 - Some non linear behaviour has been observed.
 - Non Linearity within the analogue front end introduced phase changes of up to 10 degrees with increasing amplitude.
- Non-Linear effects:
 - The analogue front end's RF levels were optimised to maximise use of component linear regions.
 - A linearization look up table was introduced to linearise the rest of the system.
- The down/up conversion components have been moved into a temperature controlled enclosure:
 - controlled to +/- 0.1 deg C
 - Long term phase drifts are now limited to ~ 0.1 degree

• The Adaptive feedforward system is being investigated with beam.

Feed-Forward Process

- The feed forward is an adaptive table which records the error signal on beam trigger and adds up to the previous record.
- Table is updated on every beam pulse.

 Feed forward signal goes through a Low pass filter before being combined with the feed back and then sent to a digital IQ modulator.

