

M. Sawamura (JAEA)

T. Furuya, H. Sakai, M.Sato, K. Shinoe , K. Umemori (KEK)E. Cenni (Graduate Univ. for Advanced Studies)

About HOM absorber at ERL'09

- Measurement of RF absorber property
 - Frequency and temperature dependence of permittivity and permeability of ferrites and ceramics controlling temperature with GM refrigerator.

Optimization of ferrite condition

Length, thickness and position were calculated to minimize Qvalue

HOM Q-value measurement

- Q_{load} and Q_{ext} were measured with 9-cell model cavity by moving ferrite sheet along beam pipe
- HOM absorber model design
 - □ HIP ferrite of new-type IB004
 - □ Comb-type RF bridge
 - □ Two kinds of thermal anchor at 80K and 5K

After ERL'09

- Fabrication of two HOM absorber models
 - HOM absorber model without ferrite
 - Measurement of thermal properties
 - Thermal conductance of bellows and comb-type RF contact
 - □ Center part with HIP ferrite
 - Check of cooling cycle tolerance of HIP ferrite
- Fabrication of two 9-cell cavities for cERL
 - Estimate HOM properties of 9-cell cavity at 4K and 2K

HOM absorber Model without Ferrite

Test for thermal conductance of bellows and comb-type RF bridge

Cooling Test Setup

 Vacuum chamber for coupler power test was used

- Connected to Liq. N₂ tank with 4 braid lines of 100mm² cross-section and 200mm length
- HOM absorber model was supported by two Teflon rods

Comparison with comb-type bridge contact

Apparently smaller thermal resistance

Modify Comb Shape

- Power flow through comb-type RF bridge
 - □ Normal position (80K-5K)/ 37(K/W) = 2W
 - □ Longitudinal contact (80K-5K)/5(K/W) = 15W
- Reduce power flow through comb-type RF bridge
 - Point contact even if combs contact each other

HOM absorber Model with Ferrite

Center part only before comb-type RF bridge and 80K anchor shaping

Test for cooling cycle tolerance

Cooling cycle test setup

- Controlled temperature pattern
 - \square RT \rightarrow 80K for 3 days (21.6min/K)
 - □ 80K keep for 1 day
 - \square 80K \rightarrow RT 3 days
- Ferrite surface inspection

Ferrite surface inspection

 Rotating ferrite on turn table and moving skin camera vertically

- Cracks occurred especially near taper
- More detail inspection with ultrasonic testing is in operation

HOM measurement with HIP ferrite at RT

- Check position of HOM absorber
 - HOM absorber model with ferrite was attached to 9-cell cavity at the same position in a module
 - Measure loaded Q-value with and without ferrite

Loaded Q-values at RT

HOM Q-values without ferrite were from 10⁴ to 10³

HOM Q-values with ferrite decreased from 10³ to 10²

HOM Measurement of Cavity at VT

- Our vertical test setup
 Beam pipe flanges are SUS
- HOM transported through beam pipe can be dissipated at SUS flanges
- HOM could be measured at VT with network analyzer

HOM spectrum at RT & 4K

- HOM frequencies are different between RT and 4K
- Degenerate modes can be separated at 4K

HOM Q-values at Liq. He

- Loaded Q-values were almost same between 4K and 2K
- $R_{BCS}(4K)/R_{BCS}(2K) \sim 40$
- Main power loss was at SUS flange

Frequency dispersion

- Two cavities for cERL are available for measurement
- ∆f=±0.73MHz

Q-value dispersion

- Many modes have almost same Q-values
- Dispersion within 3.8 times
- Several modes are different more than 10 times

Summary

- HOM absorber model
 - Comb-type RF bridge may cause large heat transfer when combs contact
 - Modify comb-shape to reduce thermal conductance in case of comb contact
- HIP ferrite cooling cycle test
 - Cracks were observed especially near taper
 - Both end of ferrite will be machined not to taper but to round corner
- HOM spectrum in cavity
 - □ Frequency dispersion $\Delta f = \pm 0.73 MHz$ by two 9-cell cavities
 - Q-values vary almost within 3.8 times but several mode over 10 times
 - Frequency dispersion will increase threshold current, but Q-value dispersion may increase/decrease threshold current. Need BBU simulation with frequency and Q-value dispersion