

Longitudinal Dynamics in the ALICE Injection Line

Julian McKenzie Frank Jackson, Yuri Saveliev, Peter Williams...

ERL 2011 Workshop

KEK, Tsukuba, Japan 20 October 2011

ALICE Overview

DC electron gun JLab FEL GaAs photocathodes

Injector Layout

Operational parameters

Parameter	Design	Operating	Units
Bunch charge	80	20 - 80	рС
Gun energy	350	230	kV
Booster energy	8.35	6.5	MeV
Linac energy	35	27.5	MeV
Repetition rate	81.25	16.25 - 81.25	MHz

- Gun voltage limited by ceramic replacing in winter shutdown.
- Linac energy and bunch repetition rate is limited by beam loading, replacing cryomodule with new DICC module in winter shutdown

Booster issues

- Booster cryomodule consists of two 9-cell TESLA type cavities
- Each ~ 1 m long and designed for electrons with β =1
- We inject at 230 keV and accelerate to 4 MeV in first cavity
- Therefore phase beam sees in each cell is completely different
- Beginning of BC1 completely dominates dynamics

completely at start of BC1

BC2 phase used to compensate energy spread from first cavity by rotating the chirp in longitudinal phase space

Energy spread measurements

Longitudinal phase space

"Hooks" and other features can easily develop

- Bunch length expands after gun due to space charge.
- Buncher cavity only reduces bunch length down to same level as initial
- Further compression occurs in BC1

Bunch length measurements

Zero-crossing method:

- Use second cavity in cryomodule at zero-cross phase to give energy chirp
- View energy spread as transverse spread after dipole
- Take images at both zero-crosses

$$\sigma_z(@ \text{ entrance to zero crossing cavity}) = \frac{\sigma_x^+(\text{screen}) + \sigma_x^-(\text{screen})}{2C_2}$$

where $C_2 = \frac{2\pi D}{\lambda} \frac{E_2}{E_1}$ or $= \frac{\sigma_x^+(\text{screen}) - \sigma_x^-(\text{screen})}{2C_2}$

Problems:

- Minimising beta for each image
- Jitter
- Non-Gaussian beams
- Background noise (post-linac only)
- Reconstructing transverse beam profile from numerous screen images stitched together

Buncher power scans

Lines = simulation Dots = measurements

BC1 set to -10 Bunch charge 40pC

Uncorrelated energy spread found by operating BC2 at zerocross to minimise energy spread by compensating for the chirp.

Measurement repeatability:

BC1 phase vs bunch length

BC1 phase

Compression in booster to linac transport line

- Total R56 of injection line ~30mm
- Very small compared to 28cm in chicane
- However, it is of the right sign to compress bunch if chirp not fully compensated by BC2

ELEGANT simulations can show compression but don't take into account all effects, space charge still important at 6 MeV

Elegant simulations

Elegant with LSC on

ASTRA simulation (for long drift, doesn't include dipoles)

Even with fully rotated bunch, can have adverse effects if phase-space has "hook"

50

0

-50

pz [eV/c]

After booster

ASTRA simulation (for long drift, doesn't include dipoles)

Summary:

- Injector dynamics complicated by reduced gun energy and long multi-cell booster cavity
- Can achieve bunch length and energy spread needed for FEL operations
- Bunch length measurements show < 2mm (6ps) rms bunch length in injector
- Measurements indicate reduction bunch length
 between booster and linac
- Simulations/measurements still not fully understood – more investigations under way
- Have to be careful with "features" in the longitudinal phase space

Thanks to all the ALICE team!

