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- Current Distribution of IBS Particles Exiting Linac
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ERLs — so what ?

| Narrower and less divergent e-beams
| More mono-energetic e-beams all of the above
| Shorter pulses
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Beam goals for Cornell ERL

Energy recovered modes One pass
Modes: (A) (B) (C) (D) Units
Flux Coherence | Short-Pulse | High charge
Energy 5 5 5 5 GeV
Current 100 25 100 0.1 mA
Bunch charge 77 19 77 1000 pC
Repetition rate 1300 1300 1300 0.1 MHz
Norm. emittance 0.3 0.08 1 5.0 mm
mrad
Geom. emittance 31 8.2 103 1022 pm
Rms bunch length 2000 2000 100 50 fs
Relative energy spread | 0.2 0.2 1 3 103
Beam power 500 125 500 0.5 MW
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3.

Simultaneous small emittances with large currents
Continuous large currents from an electron source
Continuous operation of a high-voltage Linac
Deceleration

Two path through the same linac

Linacs have small emittances, rings have large current. ERLs have both simultaneously.
a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo
b) IBS emittance growth
c) Largelon densities and related emittance growth and instabilities
Halo production as in linacs, but for currents as in rings.
a) Halo from laser (reflections, phantom pulses, pedestal)
b) Halo from field emission at the cathode
Rings have cw beams, linacs are often pulsed but have high voltage, ERLs have both.
a) Halo from field emission in the Linac
b) Halo from secondary emission in the linac due to electron loss
Large sensitivity to energy spread, e.g. wakes.
a) Large energy spread after deceleration
b)  Sensitivity to linear and nonlinear time of flight
Rings have multiple paths, Linacs have one path through many cavities, ERLs have both.
a) Simultaneous optics for different energies
b) BBU and HOM heating
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Layout

Optics

Orbits and optics errors

Space charge effects for low emittance, space charge limited beams
Beam sizes

Emittance Growth from ISR

Coherent Synchrotron Radiation for short bunches

Emittance growth from coupler kicks / cavity misalignments

Fast and slow orbit stabilization, during startup and operation

Timing for short pulse options
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2: acceleration to 2.8GeV 6: return through CESR 3: turn around with 2.2GeV
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4: acceleration to 5GeV
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Find suitable radii and numbers of bends

For General Beam Transport

1)

2)

1)
2)
3)
4)

5)

A) Radius needs to be achievable with reasonable fields: 0.9T

2. SGeV R

B) Radiative effects in the commissioning return loop:

Power deposition per length of bend: 1.3 kr\flv zoo'mA (2,5(E;ev )4 (QFT )2
Power deposition 99 W2 200 ( E )9/2 (9m )2 (30m )]/2 (0 3um )1/2
per area mm mA \2.5GeV R By

Resulting energy loss: 0.19MeV £ (2 SGeV) Fren
Incoherent-radiation emittance growth: 0-007ﬂm(%) (1 ) (2 5Gev) Frzn
Incoherent-radiation energy spread: 0.1-10°* (%)]/ (2 SEeay )5/2 2
Incoherent-radiation energy spread: 0.3%(%)]/2 lg:fn?r\)/ (2.52ev )7/2 ?m
Coherent-radiation energy loss: —119 keV( — pC) (%)1/3 27‘13)4/3 (Tg’ﬁ)
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la) Touschek-loss currents and Touschek halo

1. Simultaneous small emittances with large currents
2. Continuous large currents from an electron source
3. Continuous operation of a high-voltage Linac

4. Deceleration

5. Two path through the same linac

1

Linacs have small emittances, rings have large current. ERLs have both simultaneously.
a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo
b) IBS emittance growth
c) Largelon densities and related emittance growth and instabilities
2. Halo production as in linacs, but for currents as in rings.
a) Halo from laser (reflections, phantom pulses, pedestal)
b) Halo from field emission at the cathode
3. Rings have cw beams, linacs are often pulsed but have high voltage, ERLs have both.
a) Halo from field emission in the Linac
b) Halo from secondary emission in the linac due to electron loss
4, Large sensitivity to energy spread, e.g. wakes.
a) Large energy spread after deceleration
b)  Sensitivity to linear and nonlinear time of flight
5. Rings have multiple paths, Linacs have one path through many cavities, ERLs have both.
a) Simultaneous optics for different energies
b) BBU and HOM heating
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Creation of Touschek particles for linac beams

and placement of collimators

Density Map of Scattered particles
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1. Once one knows the creation and propagation of Touschek
particles, one can optimize the placement of collimators.

2. Choice: No collimator should take more than 1nA

3. Choice: No section in the user region should take significantly
more than 3pA/m

4. Once can then simulate the x-ray and neutron background in
collimation regions and design effective shielding for personnel
and electronics.
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« Halo distribution from intra beam scattering after deceleration

« The distribution can be computed along the ERL and be used
for collimator placement
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Touschek scattering - 15t optics
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Touschek scattering — 2"9 optics
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Touschek scattering — 4™ optics
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Halo Collimation
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X-Ray Dose Rates for Shielding Design

e beam
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1b) IBS emittance growth

1. Simultaneous small emittances with large currents
2. Continuous large currents from an electron source
3. Continuous operation of a high-voltage Linac

4. Deceleration

5. Two path through the same linac

1

Linacs have small emittances, rings have large current. ERLs have both simultaneously.
a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo
b) IBS emittance growth

In one path, for the Cornell ERL this growth is significantly below 8pm,
but can be relevant for higher energy, and smaller real-emittance
beams in ERLSs.
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3.

Simultaneous small emittances with large currents
Continuous large currents from an electron source
Continuous operation of a high-voltage Linac
Deceleration

Two path through the same linac

Linacs have small emittances, rings have large current. ERLs have both simultaneously.
a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo
b) IBS emittance growth
c) Largelon densities and related emittance growth and instabilities
Halo production as in linacs, but for currents as in rings.
a) Halo from laser (reflections, phantom pulses, pedestal)
b) Halo from field emission at the cathode
Rings have cw beams, linacs are often pulsed but have high voltage, ERLs have both.
a) Halo from field emission in the Linac
b) Halo from secondary emission in the linac due to electron loss
Large sensitivity to energy spread, e.g. wakes.
a) Large energy spread after deceleration
b)  Sensitivity to linear and nonlinear time of flight
Rings have multiple paths, Linacs have one path through many cavities, ERLs have both.
a) Simultaneous optics for different energies
b) BBU and HOM heating
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Avoiding beam growth during acceleration

i.e. by lon focusing

lon are quickly produced due to high beam density

Ton Teor. 10MeV Teol. DGEV Tool, DGeV
H> 2.0-10"23m? 3.1-10"23m? 5.6s
C'O 1.0-107%2m? 1.9.-1022m? 92.7s
CH, | 1.2-107%2m? 2.0-107%2m? 85.25

lon accumulate in the beam potential. Since the beam is very narrow,

lons produce an extremely steep potential — they have to be eliminated.

Conventional ion clearing techniques:
Long clearing gaps have transient RF effects in the ERL [2ms every 7ms].
Short gaps have transient effects in injector and gun and produce more
beam harmonics that excite HOMs [0.4 ms every 7ms].
DC fields of about 150kV/m have to be applied to appropriate places of
the along the accelerator, without disturbing the electron beam.

But remnant ion density before clearing can still cause emittance growth.
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Plot of ion line density as a function of s:
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» Longitudinal ion forces proportional to Twiss-a
so ions created near minimum move slowly
» All ions pass through region near electrodes

= sharp ion density peak near beam waist
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lons in an ERL beam
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Simultaneous small emittances with large currents

1
2. Continuous large currents from an electron source
3. Continuous operation of a high-voltage Linac

4. Deceleration
5. Two path through the same linac
1

Linacs have small emittances, rings have large current. ERLs have both simultaneously.
a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo

b) IBS emittance growth
c) Largelon densities and related emittance growth and instabilities

Fast lon Instability growth along the length of a bunch train, however the
ERL’'s beam bunch train is infinitely long.

While growth rates are in the order of microseconds, times to clear any
individual ion is on the order of ms.

This problem is still under analysis.
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Halo creation

1. Simultaneous small emittances with large currents
2. Continuous large currents from an electron source
3. Continuous operation of a high-voltage Linac

4. Deceleration

5. Two path through the same linac

1

Linacs have small emittances, rings have large current. ERLs have both simultaneously.
a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo

b) IBS emittance growth

c) Largelon densities and related emittance growth and instabilities
2. Halo production as in linacs, but for currents as in rings.

a) Halo from laser (reflections, phantom pulses, pedestal)

b) Halo from field emission at the cathode

More studies are needed: experimental halos currently seem too high to be
comfortabel.
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Image on the cathode using
normal dielectric mirror

Intensity (normalized)

Our current laser mirror (in-vacuum) scatters ~50x more light compared to
dielectric mirrors (which we cannot use). This can generate halo from the
cathode, so we are having new ones made soon. Need better than 2 nm

rms surface roughness

Average Intensity on CCD

Vac. mirror; ~5% in halo

Normal mirror: ~0.1% in ha

.

2 4
Radius [mm]

Following work by a group at DESY

Image on the cathode using
coated metal mirror
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Halo from emission in Linac

1. Simultaneous small emittances with large currents
2. Continuous large currents from an electron source
3. Continuous operation of a high-voltage Linac
4. Deceleration

5. Two path through the same linac

1 Linacs have small emittances, rings have large current. ERLs have both simultaneously.

a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo
b) IBS emittance growth
c) Largelon densities and related emittance growth and instabilities
2. Halo production as in linacs, but for currents as in rings.
a) Halo from laser (reflections, phantom pulses, pedestal)
b) Halo from field emission at the cathode
3. Rings have cw beams, linacs are often pulsed but have high voltage, ERLs have both.

a) Halo from field emission in the Linac

b) Halo from secondary emission in the linac due to electron loss
As reported by Chris Mayes ERL11, Thursday plenary session: Calculation
efforts are under way at DESY, FNAL, KEK, and Cornell.

Cornell computes x-ray and neutron backgrounds from Linac dark currents
and in a collaboration with JLAB currently compares to measurements in
CEBAF.
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Sensitivity to wakes

1. Simultaneous small emittances with large currents
2. Continuous large currents from an electron source
3. Continuous operation of a high-voltage Linac
4. Deceleration
5. Two path through the same linac
1 Linacs have small emittances, rings have large current. ERLs have both simultaneously.
a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo
b) IBS emittance growth
c) Largelon densities and related emittance growth and instabilities
2. Halo production as in linacs, but for currents as in rings.
a) Halo from laser (reflections, phantom pulses, pedestal)
b) Halo from field emission at the cathode
3. Rings have cw beams, linacs are often pulsed but have high voltage, ERLs have both.
a) Halo from field emission in the Linac
b) Halo from secondary emission in the linac due to electron loss
4, Large sensitivity to energy spread, e.g. wakes.
a) Large energy spread after deceleration
b)  Sensitivity to linear and nonlinear time of flight
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CSR in ERL bends

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 11, 070701 (2008)

Compensation of wakefield-driven energy spread in energy recovery linacs
Georg H. Hoffstaetter and Yang Hao Lau

Cornell University, Ithaca, New York 14853, USA
(Received 16 May 2008: published 23 July 2008)
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FIG. 4. (Color) Wake-induced bunch profiles at CESR. Black-
top: Cosinelike correlated longitudinal phase space from accel--

crating on crest with a ¢, = 2 ps bunch length. Blue-bottom:

Longitudinal profile after suffering half the Cornell ERL’s wake--

field, 2.
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FIG. 11. (Color) Results. Black-top: Longitudinal profile at
dump without wake correction. Blue-middle: Dump profile
with harmonic-wake correction. Red-middle: Dump profile
with nonlinear time-of-flight wake correction. Harmonic-wake
correction reduces energy spread more but is less feasible than
nonlinear-wake correction.
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la) Touschek-loss currents and Touschek halo

1. Simultaneous small emittances with large currents
2. Continuous large currents from an electron source
3. Continuous operation of a high-voltage Linac

4. Deceleration

5. Two path through the same linac

1

Linacs have small emittances, rings have large current. ERLs have both simultaneously.
a) Large Touschek-loss current, Touschek halo, rest-gas-scattering halo
b) IBS emittance growth
c) Largelon densities and related emittance growth and instabilities
2. Halo production as in linacs, but for currents as in rings.
a) Halo from laser (reflections, phantom pulses, pedestal)
b) Halo from field emission at the cathode
3. Rings have cw beams, linacs are often pulsed but have high voltage, ERLs have both.
a) Halo from field emission in the Linac
b) Halo from secondary emission in the linac due to electron loss
4, Large sensitivity to energy spread, e.g. wakes.
a) Large energy spread after deceleration
b)  Sensitivity to linear and nonlinear time of flight
5. Rings have multiple paths, Linacs have one path through many cavities, ERLs have both.
a) Simultaneous optics for different energies
b) BBU and HOM heating
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Achromatic and Isochronous optics

to 2"d orders
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BBU: Collective Instabilities

Beam break up: a potential limit to ERL currents

ngher Order Modes

V() =T, ® [W, ), (-t )t

« Similar instabilities would occur in the Linear Collider

Georg H. Hoffstaetter ERL Workshop 2011 17 October 2011



Recall. ..

|
HOM

jJ.u"l reshold 2

Damping circuit easily reduced the Q of the
2106 MHz mode by a factor of 5

I S
:lr"ll-:' '.'|I I

Magnituds

fAbove a factor | the system becomes

sensitive to external disturbances)

The threshold is increased accordingly:
from 2 mA to ~10 mA

Magnitude
Inverss G p

—— Amplifier ON (2 = 1.3a06)
— Amplifier OFF (Q = € 2208)

Frequency

[ =00 ma
—_ =33 mA
—_— =40 mA

—_— | = 48 mA
— | = 5E MA

Frequency

Iy = (7.6 - 10.6) mA

12
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The END

Current Distribution of IBS Particles Exiting Linac
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