## Calculation of CSR Impedance Using Mesh Method

Demin Zhou Accelerator laboratory, KEK

Thanks to: N. Nakamura, K. Ohmi, T. Agoh, G. Stupakov, K. Yokoya, M. Shimada, K. Oide, M. Kikuchi, H. Ikeda, N. lida, ...

> ERL2011, KEK, Tsukuba, Japan Oct. 20, 2011

## Outline

**1. Introduction to CSRZ code** 

2. Field dynamics of CSR

**3. Application to SuperKEKB DR** 

4. Application to cERL@KEK

**5. Summary** 

## Outline

**1. Introduction to CSRZ code** 

2. Field dynamics of CSR

3. Application to SuperKEKB DR

4. Application to cERL@KEK

**5. Summary** 

### **Field equations**

 $a/R \ll 1$ Parabolic equation in Frenet-Serret coordinate system:

$$\frac{\partial \vec{E}_{\perp}}{\partial s} = \frac{i}{2k} \left[ \nabla_{\perp}^2 \vec{E}_{\perp} - \frac{1}{\epsilon_0} \nabla_{\perp} \rho_0 + 2k^2 \left( \frac{x}{R(s)} - \frac{1}{2\gamma^2} \right) \vec{E}_{\perp} \right]$$

**Longitudinal field:** 

$$E_s = rac{i}{k} \left( 
abla_{\perp} \cdot \vec{E}_{\perp} - \mu_0 c J_s 
ight) \qquad J_s = 
ho_0 c$$
  
dinal impedance:  $k \equiv rac{\omega}{c} = rac{2\pi}{\lambda}$ 

**Longitudinal impedance:** 

$$Z(k) = -\frac{1}{q} \int_0^\infty E_s(x_c, y_c) ds$$

**Field separation:** 

$$\vec{E}_{\perp} = \vec{E}_{\perp}^{r} + \vec{E}_{\perp}^{b} \longrightarrow \frac{\partial \vec{E}_{\perp}^{r}}{\partial s} = \frac{i}{2k} \left[ \nabla_{\perp}^{2} \vec{E}_{\perp}^{r} + 2k^{2} \left( \frac{x}{R(s)} - \frac{1}{2\gamma^{2}} \right) \left( \vec{E}_{\perp}^{r} + \vec{E}_{\perp}^{b} \right) \right]$$

4

T. Agoh and K. Yokoya, PRST-AB 7, 054403 (2004).

## Model for numerical calculation

- 1. The curvature is variable (a series of dipoles, wiggler, etc.)
- 2. Chamber cross-section along the beam orbit:
  - Uniform rectangular cross-section (2D)



### **Numerical scheme**

#### **Finite-difference discretization:**

- 1. Staggered grid: Central difference  $\rightarrow$  Avoid numerical oscillations
- 2. Ghost points: Boundary conditions → Avoid numerical damping



## Outline

**1. Introduction to CSRZ code** 

2. Field dynamics of CSR

3. Application to SuperKEKB DR

**4. Application to cERL@KEK** 

**5. Summary** 

#### Excited modes in a long toroidal pipe

#### Single dipole:

a/b=60/30 mm, R=5 m, L<sub>bend</sub>=0.5/2/8 m Bending angle=0.1/0.4/1.6 rad





Blue solid lines: L<sub>bend</sub>=0.5 m Red dashed lines: L<sub>bend</sub>=2 m Green dotted lines: L<sub>bend</sub>=8 m

Black solid lines: Parallel plates model

#### **Related to eigenmodes**



#### Related to eigenmodes (cont'd)



#### Related to eigenmodes (cont'd)



### **Steady-state CSR**

CSR fields can be decomposed to a sum of propagating (oscillatory and trailing) and decaying (damped and overtaking) waves in a toroid waveguide [Agoh (2009)].



### Geometric model: optical approximation

Side-wall reflection can be approximated by a geometric model [Derbenev (1995), Carr (2001), Sagan (2009), Oide (2010)]



#### **Critical length (Catch-up distance):**

$$L_c = 2R\theta_c \approx 2\sqrt{2Rx_b} \qquad \qquad x_b \ll R$$

$$\theta_c = \operatorname{ArcCos}\left(R/(R+x_b)\right) \approx \sqrt{2x_b/R}$$

Path difference:

$$\Delta s = 2R(\operatorname{Tan}(\theta_c) - \theta_c) \approx \frac{4}{3}\sqrt{\frac{2x_b^3}{R}}$$

**Shielding threshold:** 

$$k_{th} = \pi \sqrt{R/b^3}$$

- Y. S. Derbenev, et al., TESLA FEL-Report 1995-05 (1995).
- G. L. Carr, et al., PAC'01, p. 377 (2001).
- D. Sagan, et al., PRST-AB 12, 040703 (2009).
- K. Oide, Talk at CSR mini-workshop, Nov. 08, 2010.
- 13 D. Zhou, et al., to be published in Jpn. J. Appl. Phys..

## Outline

**1. Introduction to CSRZ code** 

2. Field dynamics of CSR

# **3. Application to SuperKEKB DR**

4. Application to cERL@KEK

**5. Summary** 

## **Application to SuperKEKB DR**

## SuperKEKB damping ring: multi-bend interference a/b=34/34 mm, L<sub>bend</sub>=0.74/0.29 m, R=2.7/-3 m (reverse bends)

 $L_{drift}=0.9 \text{ m}, N_{cell}=32$ 

#### The vacuum chamber is curved along the beam orbit



## Application to SuperKEKB DR (cont'd)

SuperKEKB damping ring (one arc section) (Perfect conducting wall) a/b=34/34 mm,  $L_{bend}$ =0.74/0.29 m, R=2.7/-3 m (reverse bends)  $L_{drift}$ =0.9 m,  $N_{cell}$ =1/6/16





Blue solid lines: 16 cells Red dashed lines: 6 cells Green dotted lines: 1 cell Black solid lines: single-bend

### Application to SuperKEKB DR (cont'd)



## Outline

**1. Introduction to CSRZ code** 

2. Field dynamics of CSR

3. Application to SuperKEKB DR

4. Application to cERL@KEK

5. Summary

### **Application to cERL**

**cERL loop:** a/b=50/50 mm, L<sub>bend</sub>=0.7854 m, R=1 m First commissioning: 35 MeV

Multi-bend interference is not important.

$$\sigma_z \ll \Delta s = \frac{4}{3} \sqrt{\frac{2x_b^3}{R}} \approx 7.5 \text{ mm}$$

| Injection energy        | 5- 10 MeV   |
|-------------------------|-------------|
| Full energy             | 245 MeV     |
| Electron charge         | 77 pC       |
| Normalized<br>emittance | < 1 mm-mrad |
| Bunch length            | 1-3 ps      |
|                         |             |

#### Main parameters



Layout of double loop Compact ERL

Ref. M. Shimada's talk, Tue.@WG2













D. Sagan, et al., PRST-AB 12, 040703 (2009).

## Outline

**1. Introduction to CSRZ code** 

2. Field dynamics of CSR

3. Application to SuperKEKB DR

**4. Application to cERL@KEK** 

**5. Summary** 

## Summary

#### From CSRZ:

1. CSR fields can be decomposed to a sum of radiation fields (propagating modes) and beam self-fields (decaying modes) [a proof to T. Agoh's theory (PRST-AB 12, 094402 (2009))].

2. Multi-bend CSR interference appears in small storage rings and may play a role in microwave instability.

#### To cERL loop (tentative conclusions):

1. Chamber shielding causes remarkable energy kick to the tailing particles in the cases of  $\sigma_t > 1$  ps.

2. Free-space model for drift CSR wake over-estimates the energy kick in the cases of  $\sigma_t$ >1 ps.

3. Longitudinal space-charge effect (1/ $\gamma^2$  term) is a concern at E=35 MeV and  $\sigma_t$ <1 ps.

Thank you!

## Backup



### SuperKEKB DR: Microwave instability (cont'd)

#### SuperKEKB DR (latest version): CSR instability threshold [Cai (2011)]:

$$\chi = \sigma_z \sqrt{\frac{\rho}{h^3}} \approx 2.9 \qquad \qquad \rho = 2.7 \text{ m} \qquad h = 24 \text{ mm}$$
$$I_b = 0.5 * \frac{3\sqrt{2}\alpha\gamma\sigma_{\delta}^2 I_A \sigma_z}{\pi^{3/2} h} = 0.016 \text{ A} \qquad \qquad N_{th} = \frac{I_b C}{ec} \approx 4.6 \times 10^{10}$$

#### SuperKEKB DR: simulations using Vlasov solver [lkeda (2011)]:



Table 1: Damping ring parameters

| Parameter                              |           | unit |
|----------------------------------------|-----------|------|
| Energy                                 | 1.1       | GeV  |
| Maximum bunch charge                   | 8         | nC   |
| No. of bunch trains/ bunches per train | 2/2       |      |
| Circumference                          | 135.5     | m    |
| Maximum stored current                 | 70.8      | mA   |
| Horizontal damping time                | 10.9      | ms   |
| Injected-beam emittance                | 1700      | nm   |
| Equilibrium emittance(h/v)             | 41.4/2.07 | nm   |
| Maximum x-y coupling                   | 5         | %    |
| Emittance at extraction(h/v)           | 42.5/3.15 | nm   |
| Energy band-width of injected beam     | ±1.5      | %    |
| Energy spread                          | 0.055     | %    |
| Bunch length                           | 6.53      | mm   |
| Momentum compaction factor             | 0.0141    |      |
| Cavity voltage for 1.5 % bucket-height | 1.4       | MV   |
| RF frequency                           | 509       | MHz  |

Y. Cai, FRXAA01, IPAC'11 (2011) H. Ikeda, et al., THPZ021, IPAC'11 (2011)

## SuperKEKB DR: Microwave instability

#### SuperKEKB DR: CSR instability threshold

Keil-Schnell-Boussard criterion:

$$\left|\frac{Z_{\parallel}}{n}\right| < F Z_0 \frac{\gamma \alpha_p \sigma_\delta^2 \sigma_z}{N_0 r_e}$$

Condition for K-S-B criterion: broad-band impedance K.Y. Ng (1986) proposed a criterion for narrow-band impedance:

$$\begin{aligned} \left| \frac{\sqrt{2\pi}k_0\sigma_z}{4}\frac{R_s}{Q} \right| &< FZ_0\frac{\gamma\alpha_p\sigma_\delta^2\sigma_z}{N_0r_e} \\ \text{arameters:} \qquad \begin{aligned} E &= 1.1 \text{ GeV}, \ \alpha_p = 0.0141, \ \sigma_\delta = 5.5\times 10^{-4}, \\ \sigma_z &= 7.74 \text{ mm}, \ N_0 = 5*10^{10} \end{aligned}$$

Machine parameters:

For SuperKEKB DR, the K-S-B criterion give a threshold of  $|Z_{\parallel}/n| < 0.24 \Omega$ . But when applying Ng's criterion to the sharp peak at  $k_r=1.264 \text{ mm}^{-1}$ , it gives an impedance of 0.95  $\Omega$ . Conclusion: interfered CSR is important in the SuperKEKB DR.

M. Kikuchi, et al., IPAC'10, p. 1641 (2010)

## SuperKEKB DR: Microwave instability (cont'd)

**SuperKEKB DR: high-freq. modulation was observed in simulations** [lida (2011)]

