

Design studies on the ERL-Test Facility at IHEP

Jiuqing Wang for the ERL-TF Study Group IHEP, Beijing

ERL-2011, KEK, Japan, October 17-21, 2011

Outline

- Introduction of BAPS and ERL-TF
- ERL TF design
- Beam physics studies of ERL-TF
- Summary

"Beijing Comprehensive Research Center"

Planed with corporation between CAS & Beijing Govern.

CAS is proposing the

"Beijing Comprehensive Research Center"

to be built in North Suburb Beijing,

Huairou District, ~100 km from city center.

BAPS will be the central research facility of this Center.

A preliminary plan of the Beijing Advanced Photon Source

1st Phase: Small emittance synchrotron light source (2015-2020 ?)

2nd Phase : BX-ERL-FEL

BAPS Phase 1: 5GeV synchrotron light source

Main Parameters of BAPS

Parameter	Unit	Value
Energy	GeV	5
Circumference	m	\sim 1200
Beam Current	mA	200
Emittance	nm·rad	~0.5 (with damping wiggler)
Bunch Length	ps/mm	~ 7.5/2.5(Vrf=6MV)
Critical Energy(Ec)	keV	~13.4(main bend) ~100(6T SC Wig.)
Number of Straight Section		48(DBA/DVB) 40(TBA) 32(QBA)
Peak Brightness	Photons/s/mm ² /mrad ² /0.1%BW	~ 10²¹

BAPS's 2nd phase: 5 GeV X-ERL (Preliminary !)

Parameters	Units	Values
Beam energy	GeV	5
Beam current	mA	10 ~ 100
Frequency	GHz	1.3
Bunch charge	рС	7.7 ~77
Injection energy	MeV	10
Nor. Emittance (rms)	mm-mrad	0.2 ~ 2
Energy spread (rms)	%	0.02 ~ 0.3
Bunch length	ps	0.1 ~ 1.0
Radiated power	kW	400
X-ray brilliance	/(s.mm² .mrad² .0. 1%BW)	10 ²² 6

XERL Key technologies

- Low emittance (0.1 mm-mrad), High voltage DC Gun (500 KV);
- Low emittance ERL- Injector (5 MeV ~ 15 MeV);
- SC accelerating structures for CW operation, including Cavity, Coupler, HOM absorber and so on;
- ERL Beam physics; (Emittance dilution due to CSR, IBS, BBU, Merger, etc.)

XFEL-ERL has very attractive features, but the key technologies are very challenging, which need to be investigated and prepared by a test facility.

Layout of the ERL Test Facility at IHEP

- DC- and 5 MeV injector (2 x 2-cell CW SC cavity)
- L-band CW SC Linac: E = 15~20 MV/m 35 MeV ~10 mA (2 x 7-cell CW SC cavity);
- ERL ring: 2 TBA arcs, 2 straight sections;
- ERL -THz beam lines (from CSR or Oscillator).

Main parameters of the ERL-TF

Energy	35 MeV
Current	10 mA
Bunch charge	77 pC
Nor. Emittance	(1~2) mm-mrad
Energy spread	0.5% ~ 1.0%
Bunch length	(2~4) ps
Bunch frequency	130 MHz

Layout of DC- Gun (500KeV, 10mA)

DC Gun Body (500 keV, 10 mA)

500-kV gun with a segmented insulator

	guard ring against	Gun body inner diameter	502 mm
	field emission	Gun body material	Pure Ti
		Gun length	800 mm
		Ceramic insulator's material	99.8% Al ₂ O ₃
		Insulator's section number	10
		Insulator's section length	65 mm
		Insulator's outer diameter	400 mm
		Insulator's thickness	20 mm
		Cathode ball diameter	164 mm
		Cathode support rod diameter	101.6 mm
4			

We design the gun body and do lots of simulation on the field distribution, based on KEK/JAEA DC gun.₁₁

Gun field distribution simulation

The distance from the cathode to the pole is 10cm

Type E-Field Plane at x 0 Maximum-2d 1.06115e+007 V/m at -3.48632e-013 / -66.0868 / 285.597

This is the field distribution in the gun cavity simulated by 3D code, the maximum surface field is 10.6 MV/m.

DC- Gun experimental setup in hall #2

The Gun's preliminary design is ready and its funding is approved by IHEP.

5 MeV Injector

Two 2-cell SC Cavities in one Cryomodule

Injector beam simulation (1)

Injector beam simulation (2)

- Simulation conditions:
- (1) Charge / bunch 77pC;
- (2) Laser RMS beam size 1.2 mm; flat top laser, flat top 20ps, rise time 2 ps;
- (3) initial kinetic energy is assumed to 0.2 eV;
- (4) High voltage of the DC gun 500 kV, maximum field gradient on z-axie is 6.45 MV/m; maximum field gradient on the cathode surface 5.48 MV/m;
- (5) Maximum B-field of solenoid 1 is 430 Gauss; Maximum B-field of solenoid 2 is 400 Gauss;
- (6) Buncher 1.3 GHz, Maximum e-field is 5 MV/m;
- (7) two 2-cell SRF cavity, maximum e-field is 20 MV/m;

• Simulation results:

Beam energy is 5 MeV, RMS energy spread is 0.72%, RMS normalized emittance is 1.49 mm-mrad, RMS bunch length is 0.67mm = 2 ps.

Beam injection

Primary lattice of the injection system

Preliminary results of injection simulation (not yet optimized)

18

Bunch compression with the 1st TBA arc

- To avoid significant emittance growth and high-order-mode (HOM) effects, the bunches in merger and in main linac kept long enough.
- For high power THz-CSR or THz-oscillator, the bunch length should be compressed from 2ps to ~0.2ps.
- Bunch compression [T.Shiraga, et, al . NIM A 575 (2007) 315]

Accelerating the beam in the linac at an off-creat phase Φ , to produce

the additional energy spread:

$$\delta = \frac{\Delta E}{E_{f}} = \frac{E_{0}}{E_{f}} \left\{ \cos\left(\varphi + \frac{\omega z}{c}\right) - \cos\left(\varphi\right) \right\}$$

then compress the bunch by 1st TBA arc with non-zero R56:

$$\Delta Z=R_{56}\delta+T_{566}\delta^2+U_{5666}\delta^3+\cdots$$

X. Cui's poster PSP001

Bunch compression with the 1st TBA arc

- TBA consists of 45-90-45 degree dipoles and 3 families of quads.
- Preliminary results of the simulations with ELEGANT,

[M. Borland, ELEGANT: APS LS-287, September 2000].

including CSR & S.C effects, initial bunch length = 2ps, Emitt.= 1.8 um.

Linac phase	Nor. Emittance	Bunch length	Dec
(degree)	(mm-mrad)	(ps)	№ 56
13.0	2.65	0.18	0.16
12.6	2.40	0.25	0.165
12.3	2.26	0.33	0.169
12.0	2.16	0.41	0.174
11.0	1.97	0.70	0.19

When bunch length compressed from 2 ps to 0.25 ps, then the nor. emittance is increased by a factor of 29%, caused by CSR Effect, even with emittance growth suppression. 20

Suppression of the CSR induced emittanc

- Low emitt. at the undulator is one of the key requirement,
- The "envelope matching method" is used to suppress the CSR induced emittance increase, by adjusting the orientation of the phase ellipse parallel to the CSR kick [R. Hajima, APAC 2004].
- To scan the Twiss parameters at the arc exit, We set β_x = 0.202, and scan α_x in the range of -5 < α_x <+5, and whenα_x = -2, the emittance growth due to the CSR is minimum.

Energy Compression with return ARC

- Downstream the undulator, the beam energy spread is enlarged. While decelerated through the Linac, relative energy spread increases.
- This energy spread can be reduced by rotating the bunch in the longitudinalphase space, as so called Energy Compression [P.Pilot, D.R.Douglas, G.A.Krafft, Phys.Rev.ST Accel.Beams 6(2003)0.0702].
- In our ERL-TF, energy compression is done by setting the return arc (2nd TBA arc) non-isochronous, and tuning the deceleration phase in the linac.
- To stretch the bunch length, R₅₆ =-0.16 in the return arc. RF Phase~ 193 degree, the energy spread could be down to ~ 1.5%.

About the BBU effect (Preliminary)

- The BBU effect caused by HOMs in the SC cavity may be one of the most critical issues to limit the beam current.
- To suppress this effect, the most effective way is to well control the R/Q of the HOMs and well optimizes the beam optics.
- Our simulation results with a BBU-code for ERL [JIAO Yi, A BBU code developed with C language implanted in Matlab environment]
 with HOM's parameters of Cornell 7-cell ERL SC cavities
 [Mayes C.E. and Hoffstaetter IPAC 2010],
 Preliminary results:
 The BBU current limitation could be about 260 mA.

About 7-cell 1.3 GHz SC cavity design

For the design of the SC cavities of the main linac, the following factors are considered:

- **1)** Lower the cryogenic loss with large $G \cdot R / Q$;
- 2) Lower the HOM impedance about one order of magnitude than the ILC and XFEL cavities, and to avoid HOM frequencies around the multiples of the fundamental mode;
- **3)** Small electromagnetic surface field;
- 4) Large bandwidth of dipole modes, to decrease the frequency error due to fabrication error;
- 5) Magnetic field shielding (less than 10 mG).

High average power THz @ the ERL-TF

Modes	Electron beam	Insertion device	THz wave performance
CSR	Energy20MeVBunch length0.5psEmittance2umEnergy spread0.5%Peak current62 A	Period 60 mm Gap (9-23) mm Length 1.5m	Wave length 0.15~1 mm (Frequency (0.3-2) THz) Peak power 2 MW Average power 270 W
Oscill -ator	Energy 35 MeV Bunch length 4ps Emittance 2 um Energy spread 0.5%	Period 60 mm Gap (23-32) mm Length 1.5m	Wave length 21~50 um Peak power 7 MW Average power 9 kW
	Peak current 20 A		

Summary

- A 5 GeV small emittance synchrotron radiation facility is planed @ IHEP. Its R@D is under way, and may be further upgraded to an 5 GeV ERL-FEL facility according to IHEP's planed road-map.
- 2) A (35 MeV-10 mA) ERL TF is proposed @ IHEP, its beam dynamics design and the key components design were preliminary done:
 - ✓ Beam dynamics design of the 5 MeV injector and the injection system.
 - ✓ A lattice with 2 TBAs and 2 straight sections for the ERL-TF.
 - ✓ A bunch compression (from 2 ps to 0.25 ps, 77 pC) with the 1st TBA arc is studied, cost by the nor. emittance growth of ~30% due to the CSR effect, even the CSR induced emittance growth suppression is employed. Further study to optimize this issue is under way.
 - ✓ The BBU current limitation is about 260 mA as preliminary studied.
- 3) A 500 keV DC-gun will be constructed soon for the ERL TF, funded (~2M USD) by IHEP. Its design and optimization are being done.

Thank you !

Light sources comparisons

Facilities	3rd GLS	XERL	XFEL
e- energy (GeV)	3 - 8	5 - 7	14 ~ 20
Current (mA)	100 ~ 300	10~100	(3.4 ~ 5.0) kA (peak)
Emitt. (nm)	2.1 ~3.9	0.015~0.15	0.05~0.02
Peak brilliance	~10 ¹⁹⁻²²	~10 ²⁵⁻²⁶	~10 ³²⁻³³
Aver. brilliance	~10 ¹⁷⁻²⁰	~10 ²²⁻²³	~10 ²²⁻²⁵
Pulse length	15~70 ps	1 ps ~100 fs	~100 fs
Coherency (Coher. photons)	Partial Transv. (~10 ¹³⁻¹⁴)	Partial Transv. (~10 ¹⁷)	Coherent (~10 ²⁴)
Other features		Energy Recovering; Round beam with small emittance.	
Simultaneous users	≥ 50	~ 30	Not many
Feasibility	Feasible	Under R&D	Feasible

They can not be replaced each other !

Preliminary parameters of BAPS

	Spring-8	APS	ESRF	SSRF	DIAMOND	NSLSII	TPS	BAPS (preliminary)
Energy	8 GeV	7	6	3.5	3	3	3	5
No. periods	48	40	32	20	24	30	24	50
Emittance (nm)	6.9	7.6	6.8	11.8	6.5	2.09	4.9	1.11
Emittance w.wiggler	2.22	2.26	3.24	4.51	1.92	0.983	1.92	0.587
Circum. (m)	1436 m	1104	844.4	432	561.6	792	518.4	1218.4
Strait section L	44×6.6 4×30	40×6.7	32×6.3	16×5.3 4×10.8	18×5.0 6×8.0	15×6.6 15×9.3	18×7 6×12	45×6.4 5×14.6
ΣL/C	0.286	0.243	0.239	0.296	0.246	0.301	0.382	0.296
Dynamic Aper. (mm)						±15		

BAPS's 2nd phase: (6~8) GeV XFEL (Preliminary)

		LCLS	E-XFEL	SCSS	BXFEL
	Energy (GeV)	14.35	20.0	6~8	6 ~ 8
_	Nor. Emittance (µm)	1.2	1.4	0.5	0.8 ~ 1.2
В	Energy spread (rms, %)	0.008	0.0125	0.02	0.01
E A	Peak current (kA)	3.4	5.0	4.0	4.0
M	Bunch length (fs)	230	200	250	230
	Repe. rate (Hz)	120	10	50	25
	Gap / Period (mm)	5 / 30	10 / 38	3.5/15 ~4/18	3.5/15 ~ 4/18
ID	B field (T)	1.32	1.06	0.94	0.94 ~ 1.14
	K value	3.71	3.8	1.32	1.32 ~ 1.9
	Wave length (nm)	0.15	0.1	0.1	0.1
F E L	Satua. gain length (m)	86	145	35	52 ~ 84
	Peak power (GW)	9	24	8	2.6 ~ 6.3
	Peak brilliance (10 ³²)	12	54	10	5~8

BAPS's 2rd phase: 5 GeV BX-ERL (Preliminary)

Parameters	Units	Values
Beam energy	GeV	5
Beam current	mA	10 ~ 100
Frequency	GHz	1.3
Bunch charge	рС	7.7 ~77
Injection energy	MeV	10
Nor. Emittance (rms)	mm-mrad	0.2 ~ 2
Energy spread (rms)	%	0.02 ~ 0.3
Bunch length	ps	0.1 ~ 1.0
Radiated power	kW	400
X-ray brilliance	/(s.mm² .mrad² .0. 1%BW)	10 ²² 31

Cathode preparation system

中國科學院為能物理研究所 Institute of High Emergy Physics, Chinese Academy of Sciences

Primary 7-cell 1.3 GHz SC cavity parameters

f ₀	1.3 GHz
Cavity voltage $V_{\rm c}$	15 MV
Effective length L _{eff}	0.8 m
Accelerating gradient E _{acc}	18.8 MV / m
Q ₀	> 10 ¹⁰
Q _L	$2 imes 10^7$
Bandwidth	65 Hz
R/Q	800 Ω
Iris diameter	72 mm
Large beam pipe diameter	110 mm
Small beam pipe diameter	78 mm
Geometry factor (G)	270 Ω
E _{peak} / E _{acc}	2.06
B _{peak} / E _{acc}	4.2 mT / (MV / m)
Longitudinal loss factor*	13.1 V / pC
Transverse loss factor*	13.7 V/ pC / m

