The Jefferson Lab 200 kV Inverted Gun: Lifetime Measurements Using Strained Superlattice GaAs and K₂CsSb Photocathodes

R. Suleiman, P. Adderley, M. BastaniNejad, J. Clark, S. Covert, J. Grames, J. Hansknecht, R. Mammei, J. McCarter, M. Poelker, M. Stutzman, K. Surles-Law, T. Rao, J. Smedley

KEK, Japan, October 20, 2011

Benefit of Higher Gun Bias Voltage

- Reduce space-charge-induced emittance growth, maintain small transverse beam profile and short bunch-length. In other words, make a "stiff" beam right from the gun particularly important for high bunch charge beam
- ✓ CEBAF guns have always operated at 100 kV (β = 0.55)
- ✓ Achieved better transmission in CEBAF Injector at high beam current with 130 kV (β = 0.60)
- ✓ Later, we envision an improved CEBAF photo-injector with a 200 kV gun and SRF capture section (β = 0.70)
- Indentify what it takes to reach 350 kV bias voltage or higher (β= 0.8+). For ILC, CLIC, EIC, etc.

Biggest obstacle: Field emission and HV breakdown...

which lead to Photocathode death

Jefferson Lab

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 010101 (2010)

Load-locked dc high voltage GaAs photogun with an inverted-geometry ceramic insulator

P. A. Adderley, J. Clark, J. Grames, J. Hansknecht, K. Surles-Law, D. Machie, M. Poelker,* M. L. Stutzman, and R. Suleiman *Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA* (Received 24 November 2009; published 26 January 2010)

A new dc high voltage spin-polarized photoelectron gun has been constructed that employs a compact inverted-geometry ceramic insulator. Photogun performance at 100 kV bias voltage is summarized.

First Inverted Gun @ CEBAF

 I. 100 kV: Lifetime ~ 100 C at 180 µA with transmission of 85%

II. 130 kV: Lifetime ~
100 C at 180 μA with transmission of 95%

- Spring, 2009 Built first inverted gun (stainless steel cathode electrode)
- o July, 2009 Installed at CEBAF
- HV Power Supply: Glassman 150 kV, 12 mA
- Ran CEBAF program @ 100 kV

efferson Lab

- September, 2010 Conditioned to 150 kV successfully
- Since Operating at 130 kV (limited by present injector design)

Second Inverted Gun @ Injector Test Cave

Jefferson Lab

Large grain Niobium (Nb) to 225 kV

- o Large grain Niobium (Nb) cathode electrode
- o HV Power Supply: Spellman 225 kV, 30 mA
- Why a Niobium electrode?
 - I. Buffered-chemical polishing (BCP) for ~ 1 hour, no need for hand-polishing (takes weeks)
 - II. No field emission at high field gradients

HV Conditioning and Field Emission Problematic field emission at 200 kV Ο Conditioned to 225 kV helpful (limited Ο by HVPS) Floating Anode 10 Anode Current (pA) HV Conditioning Macor glass-ceramic connected to 200 kV Pico-ammeter spacer 10² 225 kV 10 100 MΩ Conditioning Resistor 10⁻¹ 50 100 150 200 InvGun2 HV (kV) UNIVOLT Transformer Oil Tank A Short for Beam Delivery Jefferson Lab

Measure x-rays

- Anode may not capture all field emission current
- o Ion Chamber Detector: Model IP 100 -
- Energy threshold of 50 keV
- o Readout: CANBERRA ADM 616

Re-polished Large Grain Nb Electrode

- Longer buffer-chemical polish (BCP) was successful
 - \circ $\,$ No field emission up to 225 kV $\,$
 - x-ray stayed at background level (8 E-3 mR/h)

High Polarization SSL @ 4 mA

Parameter	Value	
Gun Bias Voltage	200 kV	
Laser Rep Rate	1500 MHz	
Laser Pulselength	50 ps	
Laser Wavelength	780 nm	
Laser Spot Size	350 µm (FWHM)	
Photocathode	GaAs/GaAsP	
Beam Current	4 mA	
Bunch Charge	2.7 pC	
Duration	1.4 hr	
Extracted Charge	20 C	
Lifetime	85 C	

Jefferson Lab

- \circ High initial QE ~ 1.5%
- o Higher 200 kV voltage → superseding 1 mA demo (PAC'07)
- Push technology in support of Electron Ion Colliders > 50 mA

K₂CsSb Photocathode Lifetime

- Photocathode made at Brookhaven National Lab
- Transferred to UHV suitcase and driven down to Jefferson Lab
- o K₂CsSb exhibits very long dark lifetime
- Measured lifetime at different beam currents and laser wavelengths
- \circ $\,$ See Poster Session for more details

son Lab

Parameter	Value	
Gun Bias Voltage	200 kV	
Laser	532 nm, dc	
Laser Spot Size	350 µm (FWHM)	
Beam Current	5 mA	
Duration	26 hr	
Extracted Charge	465 C	
Lifetime	No Change in QE	

K₂CsSb Photocathode Emittance

 Measured the Emittance after lifetime measurements

- Used a solenoid scan technique and a wire scanner to measure beam size
- Measured at two Gun HV: 100 kV and 200 kV with 3 µA beam current
- Measured at two 532 nm laser spot sizes: 0.35 mm and 0.70 mm (FWHM)

efferson Lab

Summary and Outlook

- I. Inverted Gun #1 Stainless steel electrode operating at 130 kV (conditioned to 150 kV) at CEBAF for precision parity violation experiments requiring high beam current (180 μA)
- II. Inverted Gun #2 Large grain Niobium electrode operating at 200 kV (conditioned to 225 kV) at Injector Test Cave for studies of Photocathodes operating at milliampere current

III. Future research next

Will Higher HV Improve SSL Lifetime? electron beam At lower Gun HV, the anode (+) <mark>0</mark>8 cross section is larger over longer distance 0 H_2 lonization Cross Section (cm 2) 8 10⁻¹⁵ 0 lon energy H_2 8 8 Gun HV 8 10⁻¹⁶ 100 kV cathode (-) 0 200 kV 0 0 10⁻¹⁷ ${}^{\circ}$ 0 10⁻¹⁸ Lifetime is limited by ion back-bombardment 10-19 10-4 10⁻³ 10⁻² 10⁻¹ 10 1 1.8₁ **Distance from Photocathode (cm)** 1.6 H₂ lons Yield Ratio 1.4 At 200 kV, only <u>60%</u> of ions are 1.2 created compared to 100 kV, 1.0 0.8 Longer lifetime? 0.6 Any lifetime dependence on ion 0.4 energy? 0.2<u></u> 50 100 150 200 250 300 350 Gun High Voltage (kV)

Backup Slides

Emittance and Brightness

Normalized Emittance from GaAs:

$$\varepsilon_{n,x,y} = \sqrt{\frac{q}{4\pi\varepsilon_0 E_s} \frac{k_B T_{eff}}{m_e c^2}}$$

- q Bunch Charge (= 0.4 pC, 200 μ A and 499 MHz)
- E_s Electric Field at GaAs surface
- T_{eff} Effective Temperature of GaAs (= 300 400 K, 780 nm)
- $k_B T_{eff}$ Thermal Energy (= 34 meV)

Gun HV (kV)	E _s (MV/m)	ε _n (μm)
100	2.0	0.011
140	2.8	0.009
200	4.0	0.008

Bunchlength and Transmission

- At higher gun HV, bunchlength is shorter – when Chopper Slit is fully open, it passes 111 ps - and space charge emittance blow-up is suppressed
- Transmission through Injector, improves at higher gun voltage
- Better transmission prolongs lifetime:
 - Less beam loss that degrades vacuum
 - Lower current from gun creates less ions and thus slows NEA damage
- Better transmission reduces current fluctuations and thus improves Hall measurement of helicity-correlated charge asymmetry

Space Charge Limit at CEBAF

> Maximum current density that can be transported across cathode-anode gap is (for an infinite charge plane):

Child's Law (1D):
$$\dot{j}_1 = (2.33 \times 10^{-6}) V^{3/2} / d^2$$
 [A/cm²]

For electron emission from a finite circular spot on the cathode:

Child's Law (2D) (PRL **87**, 278301) :
$$j_2 \sim j_1 \left(1 + \frac{1}{4} \frac{d}{r} \right)$$

➢ For CEBAF electron beam (499 MHz):

Short Pulse (PRL 98, 164802): $\dot{J}_{SCL} = \dot{f}_2 \left(2 \frac{1 - \sqrt{1 - 3X_{CL}^2 / 4}}{X_{CL}^3} \right)$, $X_{CL} = \frac{t_b}{\tau_{CL}}, \tau_{CL} = \frac{3}{2} \tau_{Single - electron}$

- *V* Gun Voltage
- *D* Cathode-anode Gap (6.3 cm)
- *R* Laser Spot Size (0.5 mm = 2*r*)
- T_b Bunchlength (50 ps)
- τ_{CL} Gap Transit Time (0.96 ns at 100 kV)

