

Development of High-average-current RF Injectors

<u>D.C. Nguyen</u>, H.L. Andrews, C.E. Heath, F.L. Krawczyk, N.A. Moody, R.M. Renneke and W.M. Tuzel

Los Alamos National Laboratory

J.W. Lewellen

Naval Postgraduate School

[†] Work supported by the Office of Naval Research

Electron Beam Requirements

Bunch charge
 0.1 – 1 nC

Repetition rate<1 GHz

• High duty factor >10%

Peak cathode gradient
 10 – 25 MV/m

Beam energy >1 MeV

• Normalized rms emittance $0.1 - 3 \mu m$

• Bunch length 1-10 ps

• Energy spread <0.1%

Demonstrated and Expected Performance

No injector thus far has demonstrated more than 32 mA.

CW Normal-Conducting RF Injectors

LANL/AES 700 MHz Gun
2.5-cell Full-wave

LBNL 187 MHz Gun Single-cell Quarter-wave

CW Superconducting RF Injectors

Rossendorf 1300 MHz Gun 3.5-cell Full-wave

NPS/Niowave 500 MHz Gun Single-cell Quarter-wave

Key Design Considerations

- Emittance Compensation
 - Solenoid: Demonstrated good emittance
 - RF focusing: Insufficient but provides extra focusing
- Cathode gradient
 - Too high: Field emission, ohmic losses (NCRF)
 - Too low: Space charge limited
- Photocathodes & lasers
 - Semiconductor: High QE, short lifetime; visible light
 - Metal: Low QE, long lifetime; UV light

Emittance Compensation

Envelope equation

Acceleration damping

Invariant envelope
$$\sigma_{inv} = \frac{2}{\gamma'} \sqrt{\frac{I}{3\gamma_0 I_A}}$$

Solenoid and RF magnetic field focusing (at small injection phase) can limit both space charge and RF induced emittance growth.

Emittance Compensation in NCRF & SRF Guns

PARMELA simulations show the feasibility of generating nC bunch charge beams with normalized rms emittance of 2–3 μm

Field Emission Consideration

- Cathode gradient
 - High cathode gradients lead to high dark current
- **Photocathodes**
 - Cathodes with low work function have high dark current
 - Rough surfaces have high dark current

Fowler-Nordheim Equation

$$J = A \frac{(\beta E)^2}{\Phi} 10^{\frac{4.52}{\sqrt{\Phi}}} \exp \left[\frac{-B\Phi^{\frac{3}{2}}}{\beta E} \right]$$

$$A = 1.54 \times 10^{-6} \text{ A eV/V}^2$$

$$B = 6.53 \times 10^3 \text{ MV/m eV}^{-1.5}$$

$$A = 1.54 \times 10^{-6} A \text{ eV/V}^2$$

$$B = 6.53 \times 10^3 \,\text{MV/m eV}^{-1.5}$$

Field enhancement

CsK₂Sb Photocathode

QE at 532 nm = 5% 1/e Lifetime with 10^{-10} torr $H_2O = 3$ h 1/e Lifetime with 3 x 10^{-11} torr $H_2O = 20$ h

QE improves at higher photon energy (shorter λ)

Wavelength [nm]

800 600 400

10⁻¹

O As fabric.

A 2 L O₂

+ 12 L O₂

× 3 L CO₂

Photon energy [eV]

Courtesy of Dave Dowell (CsK₂Sb data with the Boeing injector)

Cs₂Te Photocathode

First QE = 14%

First 1/e Lifetime = 30 h

Second QE = 4%

Second 1/e Lifetime = 300 h

Courtesy of Suberluqc (Cs₂Te data with the CLIC injector)

S. Kong et al., J. Appl. Phys. 77(11) 6031 (1995)

Conclusions

- CW injectors operate at much lower gradients and frequencies than low-duty, pulsed injectors.
- Emittance compensation is necessary to achieve high-brightness electron beams at low gradients.
- Field emission (dark current) is an important design consideration for high-duty injectors.
- The choice of photocathodes affects the maximum cathode gradient, complexity of the drive laser, and injector operation time.

