

First results of the SRF gun development for the BERLinPro ERL project at HZB

ERL 2011 Tsukuba

T. Quast

for a collaboration by

Jefferson Laboratory, DESY, A. Soltan Institute, Brookhaven National Lab., Max-Born-Inst. and HZB

BERLinPro: General Machine Parameters / Layout

Minimal machine design / work on new cost estimates in progress No space for second turn, experiment / no up-grade options

	High flux	flexibility
max. beam energy	50MeV	50MeV
max. current	100mA	
nominal bunch charge	77рс	up to ~10pC
pulse length	2ps	down to ~ 100fs
Rel. energy spread	~10 ⁻⁴ range	~10 ⁻²
rep. rate	1.3GHz	variable
normalized emittance	< 1mm mrad	some mm mrad

Workshop in 2008: evaluation of possible concepts – and decision for SRF gun

NC RF Gun and DC Gun: mature techniques, but seem already reached limit (?)

HZDR/ELBE SRF gun

•1mA of average current from normal-conducting Cs2Te cathode at 77K

• <u>No degradation</u> in cavity performance due to cathode stock and material

HZDR/ELBE gun shows feasiblity of the SRF gun concept
→ SRF cavity with normal-conducting cathode works!

1. For our application, we need different performance:

1. Beam dynamics: How can we have more control on the transverse and longitudinal beam parameters? Mainly determined by field on cathode and setup of any focusing elements.

Cavity Design..

2. Average current: How can we generate 100 mA? Need cathode with high QE at VIS, which can operate in SRF environment.

Cathode preparation and handling.. (CsK₂Sb & green Laser)

3. Average power: How can we couple $P_{avg} = 100 \text{ mA x } E_{b}$ power into the SRF cavity?

Coupler, HOM Damper..

Demanding goals! - 3 stage approach – 3 injectors

- **Full SC** injector for beam dynamics studies \rightarrow <u>This talk</u> а.
- **Peak brightness** injector, study NC cathode insert b.
- High average current injector С.

First step: SC RF Gun0

Frequency π -mode	1300 MHz
E _{peak} /E _{acc}	1.86
H _{peak} /E _{acc}	4.4 mT/(MV/m)
Geometry factor	212.2 Ohm
R/Q (linac, b=1)	190 Ohm

- EM design: Highest fields at cathode region
- SC lead cathode on halfcell backwall: QE_{Pb}~10·QE_{Nb}
- Study beam dynamics at short pulses, ERL parameter range

Gun with Diagnostic beamline at HZB

First time operated fully SC photoinjector ensemble (SC Cathode, Cavity, Solenoid) Source/upgrade for CW low current machines (POLFEL, XFEL)

Extension of the HoBiCaT Cavity Test Facility

The drive laser: cw with short pulses in UV to do beam diagnostics experiments with the Pb/Nb system

Regenerative amplifier

Cavity fabrication at Thomas Jefferson Lab (P. Kneisel, PAC 2011)

Cavity in helium vessel

Mechanical design: Countermeasures to increase field stability

- Beam quality dominated by field stability
- Field stability in SC cavity: Avoid detuning (deformation) of the cavity

Cathode deposition at IPJ Andre Soltan Swierk

Plasma arc depositon setup in 30° configuration

16 x 5min depositions result in a few hundred nm thick Pb cathode film

Pb cathode film

Final diameter by BCP + special mask: 5 mm

Cavity with helium vessel

Mask to protect cavity

T. Quast, ERI 2011 Tsukuba

Quality factor measurements: Vertical and Horizontal tests (JLab and HZB)

Dark current studies continued

Nordheim-Fowler fit of dark current/ field emission shows reduction of field enhancement factor β_{NF} .

Effectively emitting A_e area increases

SEM images of comparable samples show droplets and tip on tip like structures

Laser cleaning levels small defects? (λ=248 nm, 0.1 mJ/mm²) Tests with Niobium are planned

Arc deposited lead samples sem image

T. Quast, ERI 2011 Tsukuba

Quantum Efficiency and beam measurements

J. Smedley, T. Kamps, T. Quast, A. Neumann, R. Barday

The three stage approach

	Parameter		HoBiCaT Stage A	Gun lab Stage B	BERLinPro Stage C	
	Goal		Beam Demonstrator	Brightness R&D gun	Current Production gup	
	Electron energy			≥ 1.5 MeV		
	RF frequency		1.3 GHz			
	Design peak field		\leq 50 MV/m			
	Operation launc	h field		$\geq 10 \text{ MV/m}$		
	Bunch charge $\leq 77 \text{ pC}$					
	Repetition rate	(30 kHz	54 MHz	1.3 GHz	
	Cathode materia		Pb	Cu, CsK_2Sb	CsK ₂ Sb	
	Laser waveleng	th	256 mm	355, 526 nm	520 mm	
	Laser pulse energy Laser pulse shape Laser pulse length		0.15 μJ	$\leq 1 \mu J$	4 nJ	
			Gaussian	Gaussian, Flat-top	Flat-top	
			2.5 ps r w mv	$\leq 10 \text{ ps}$	100 m	
Average current			0.5 μΑ		100 IIIA	
Stage A (Beam dynamics): Stage		ge B (Peak Brightness):		Stage C (High avg. Current):		
 Study beam dynamics of SC RF photoinjector: Emittance Field levels Stability Fully SC design Starting point for design 		udy + develop cathode sert into SC injector: etime and QE cathode materials eliable cathode placement scheme		 SC design current High power HOM date Cathode 	in for ERL design ver operation mping lifetime	
 Starting point for de 	esign					

Started here

and operation of SRF gun

T. Quast, ERI 2011 Tsukuba

Outlook: Near future

- Measurements of beam emittance and thermal emittance of lead are in progress, data will be published at IPAC 2011(T. Kamps et al.)
- More detailed studies about laser cleaning, QE measurements, also XPS analysis will be published in the near future
- Further studies about the cavity trips will be done, improvement of Q₀ by helium processing is planned for

This work is a collaborative effort by:

J. Sekutowicz, *DESY, Hamburg, Germany* P. Kneisel, *JLAB, Newport News, Virginia, USA* R. Nietubyc , *The Andrzej Soltan Institute for Nuclear Studies, Swierk/Otwock, Poland* J. Smedley, *BNL, Upton, Long Island, New York, USA* I. Will, *Max-Born-Institut, Berlin, Germany* W. Anders, R. Barday, A. Jankowiak, T. Kamps, J. Knobloch, O. Kugeler, A. Matveenko, A. Neumann, T. Quast, *HZB (BESSY)* J. Teichert, A. Arnold, P. Michel *HZDR, Rossendorf* + the support of many more.....

