ERL2011 October 16-21, 2011 KEK, Tsukuba, Japan

Ultrafast Science with ERL

Shin-ichi Adachi Photon Factory, KEK

ERL Science Who are the targets?

Photon Factory Photon Factory

Outline

- 1. Introduction
- 2. Current status of picosecond X-ray science at PF-AR, KEK
- 3. Future challenges of ultrafast X-ray science with ERL
- 4. Summary

Spatial features of ERL

(natural emittance, electron beam size, and divergence)

Sources	Natural emittance (nmrad)	σ _x μm	σ _y μm	σ _x , μ rad	σ _y , μ rad
ERL (3GeV)	0.017	7.1 Di	7.1 ffraction lir	2.3 nit @ ~7ke '	2.3
SPring-8 (8GeV)	3.4	298	6.1	12	1.1
Photon Factory (2.5GeV)	36	600	12	88	29

Temporal features of ERL

(rep rate, photons, and duration)

Source	Rep rate	Photons/pulse	Photons/sec	Pulse duration
ERL	1.3GHz	10 ³ -10 ⁶ Short pul	10 ¹² -10 ¹⁵ se, high rep ra	100fs-1ps
SASE-XFEL	60-120Hz	~10 ¹²	~10 ¹⁴	10-100fs
Storage ring	1MHz-500MHz	10 ⁶ -10 ⁹	10 ¹² -10 ¹⁵	~100ps
				High Energy Accelerator Research Organization (KEK Institute of Materials Structure Science (IMSS) Photon Factory

picosecond X-ray science @ PF-AR, KEK dedicated single-bunch operation

Ring energy: 6.5 GeV RF frequency: 508.58 MHz Circumference: 377 m Harmonic number: 640 Bunch length: 18.6 mm (62 ps)

Schematic layout of time-resolved X-ray beam line (NW14A, PF-AR, KEK)

Picosocond X-ray applications at PF-AR

Sci. USA, 106, 2612 (2009)

91, 231918 (2007)

Ultrafast structural dynamics of Fe complex revealed by TR-XAFS

Nozawa *et al.* J. Am. Chem. Soc., 132, 61-63 (2010).

picosecond spin transition of Fe^{II}(phen)₃

X-ray Absorption Fine Structure (XAFS) Cu K-Edge (Cu foil, 5µm thickness)

Excite state XANES

Excited state EXAFS

EXAFS analysis summary

Spectrum	R _{Fe-N} (Å)	σ² (Ų)
LS	1.98(1)	0.001(1)
Photo-excited HS	2.15(2)	0.011(3)

Picosecond molecular movie!

Low Spin Ground State (¹A₁)

Photo-Excited High Spin State (⁵T₂)

Nozawa et al. J. Am. Chem. Soc., 132, 61-63 (2010).

Ultrafast X-ray study @ KEK

 Ultrafast X-ray study provides dynamic information of spin, electronic and structural states of materials

Is ultrafast X-ray also useful to solve problems our society?

World energy consumption by fuel type in 2010

Energy consumption and supply on the earth

- Incoming solar energy: 5.5x10²⁴ (J/year)
- Global energy consumption: 3x10²⁰ (J/year)
 0.005% (~1 hour) of incoming solar energy
- Global production of photosynthesis: 3x 10²¹ (J/year)

- 0.05% (~10 hours) of incoming solar energy

- Remaining amount of fossil fuels: 9x10²² (J)
 - 1.6% of incoming solar energy per year

Investigating the Climate System, NASA, June 2003 http://www.nasa.gov/pdf/62319main_ICS_Energy.pdf

Key players Solar Cell and Photocatalyst

- Converts light energy to electricity
- Large-scale battery is needed for storage
- Quantum efficiency : ~20%

- Converts light energy to chemical energy
- Easily stored as hydrogen or hydrocarbons
- Quantum efficiency: ~5%

Toward artificial photosynthesis (1) Ultrafast dynamics of photocatalyst

Maeda, K. and Domen K. (2010) J. Phys. Chem. Lett. 1, 2655.

Toward artificial photosynthesis (2) Hydrogen generation from water by photocatalyst $(Ga_{1-x}Zn_x)(N_{1-x}O_x)$

0725-703 5.0kV ×180k SE(L

Maeda K. et al. (2006) Nature 440, 295

Toward artificial photosynthesis (3) Capturing Light Energy by Ruthenium Complex

$[Ru(bpy)_3]^{2+}$

What are the fundamental timescales?

Chemistry and Biochemistry

Courtesy of Christian Bressler (European XFEL)

High Energy Accelerator Research Organization (KEK) Institute of Materials Structure Science (IMSS) Photon Factory

Toward temporal coherence

Case1: 3rd gen. synchrotron sources

Case2: ERL & SASE-XFEL (Diffraction limit)

Case3: XFELO & seeded XFEL (Fourier transform limit)

Fourier-limited X-ray

Ultrafast Science with ERL and XFEL-O

- Sub-picosecond pulse duration
 - Molecular vibration or phonon
 - Electron-phonon coupling: superconductivity
- 1meV energy bandwidth
 - femtosecond time-resolved RIXS, ARPES, EXAFS
- Temporal coherence
 - Nonlinear X-ray optics
 - Two-photon correlation spectroscopy
 - Transient grating

Summary (1)

- Ultrafast X-ray study provides dynamic information of spin, electronic and structural states of materials
- Powerful tool for artificial photosynthesis studies
- Picosecond is not enough. Femtosecond and temporal coherence opens new field.
- Hopefully, few femtoseconds to attosecond is needed to capture electronic dynamics
- High rep rate is critically important for pumpprobe experiment

Summary (2) (by Chi-Chang Kao @ XDL2011, WS3)

- In order to realize future light source,
 - Identify problems that can capture the imagination of many
 - Organize the community to develop the scientific case, the necessary tools
 - Work with accelerator community to support the R&D effort

members @ Beam Line NW14A, KEK

Shunsuke Nozawa (KEK)	Tokushi Sato (KEK)	
Manabu Hoshino (TITECH, KEK)	Ayana Tomita (KEK)	
Matthieu Chollet (→LCLS)	Laurent Guérin (→Univ. Rennes 1)	
Kouhei Ichiyanagi (→Univ. Tokyo)	Shin-ya Koshihara (TITECH)	

Thank you!

Fully coherent sources (1) High-Gain Harmonic Generation (HGHG)

(2) Self-seeded FEL

Saldin E L, Schneidmiller E A and Yurkov M V,

Nucl. Instrum. Methods A 445 178-82 (2000)

(3) XFEL Oscillator

(4) Echo-Enabled Harmonic Generation (EEHG)

Electron beam energy: 3 GeV Peak current: 1 kA Normalized emittance: 1 mm mrad Slice energy spread: 150 keV Undulator period length in M1 and M2: 25 cm Number of undulator periods in M1 and M2: 6 Undulator period length in M3: 20 cm Number of undulator periods in M3: 2

D. Xiang, Z. Huang, and G. Stupakov, Phys. Rev. ST Accel. Beams 12,060701 (2009)