

DC-SRF photocathode injector for ERL at Peking University

SRF group Institute of Heavy Ion Physics Peking University October 18, 2011

ERL project at Peking University

- Design of DC-SRF photocathode injector
- 3.5 cell Injector cryomodule and testing beam line
- Preliminary RF and beam testing of DC-SRF gun
- Summary

ERL project at Peking University

Peking University Superconducting ERL Test Facility (PKU-SETF)

Main parameters of SETF

E Beam Parameters		FEL Parameters	
Energy [MeV]	30	Wavelength [um]	10.03 (5.1)
Energy spread, FWHM	0.32%	G0	0.61 (0.21)
Bunch charge [pC]	60	G	0.30 (0.10)
Normalized Emittance [mm.mrad]	4	Out-coupled peak power [MW]	2.12 (0.97)
Bunch length, FWHM [ps]	4	Out-coupled macro pulse avg power [W]	220.7 (101.2)
Micro pulse length [MHz]	26	Out-coupled avg power [W]	4.4 (2.0)
Macro pulse length [ms]	2	Intra-cavity peak power [MW]	26.53 (97.31)
Macro pulse repetition rate [Hz]	10	Intra-cavity avg power [W]	55.2 (202.4)

ERL project at Peking University

Quantity	Value	
Wavelength	400μm ~ 1200μm	
Radiation Angel	0.04 rad	
Bandwidth	5%	
Peak Power	~100 kW	
Average Power	~1W	

IHIP, Peking University, China 5

ERL project at Peking University

CBS: photon energy~10keV

Flux~10⁸ photon/s

- ERL project at Peking University
- Design of DC-SRF photocathode injector
- 3.5 cell Injector cryomodule and testing beam line
- Preliminary RF and beam testing of DC-SRF gun
- Summary

Basic Idea of DC-SRF Photo-injector

Pierce structure + SRF cavity

- Compatibility of photocathode and SC cavity
- Compact structure
- Could be operated at CW mode
- Good beam quality

- Electric field on cathode surface could not be very high
- Emittance compensation solenoid is far from cathode

Could handle moderate average current (1~10mA)

Feasibility Test at 4K

Prototype with a pierce gun and a 1.5cell superconducting cavity succeeded in accelerating electron beams at 4K in 2004

Energy gain ~1MeV, emittance~5µm

Promoted the design of an upgrade DC-SRF gun with 3.5 cell cavity

Design process of the 3.5cell superconducting cavity

Electric field distribution of the 3.5cell cavity

Simulation on Multipacting

No serious multipacting with reasonable geometrical parameters

Mechanical properties of the 3+1/2 cell cavity

Stiffer ring	Position (distance from the axis) /mm
1	38
2	85
3	50
4	80
5, 6, 7	53.5

Field flatness

Lorentz force detuning coefficient	tuning range of the cavity	Frequency change by 0.1mm cavity deformation	Force on the cavity with 0.1mm cavity deformation	Flatness change after tuning ±0.4mm
1.2Hz/(MV/m) ²	±200kHz	70kHz	1000N	<3%

Electric field of DC pierce stucture

Effect of DC voltage on emittance

Transverse emittance v.s. DC voltage (100pC, 13MV/m)

Beam Dynamics simulation at two different operating modes

Pulse shape, beam spot, energy spectrum of the output beam

THz mode

ERL based FEL mode

Design Parameters of the DC-SRF injector (DC voltage 90KV)

Drive laser				
Pulse length (FWHM)	10ps			
laser spot (FWHM)	3.0mm			
Repetition rate	81.25MHz			
Bunch charge distribution	transverse uniform , longitudinal Gaussian			
Injector	ERL mode	THz mode		
gradient	13 MV/m	15MV/m		
Bunch charge	60~100 pc	20рс		
energy	5MeV	<5MeV		
Transverse emittance (rms)	1.2mm·mrad	2.1 mm·mrad		
Longitudinal emittance (rms)	15 deg—KeV	3.0deg—KeV		
Bunch length (rms)	3ps	0.55ps		
Rms beam spot	0.3mm	1.7mm		
Energy spread	~0.5%	0.55%		

Upgrade of DC-SRF injector

• 100 KV Pierce DC gun with Cs_2 Te cathode matched with SRF cavity

Providing 3-5 MeV electron beam with bunch charge of 60 pC and low emmittance

- ERL project at Peking University
- Design of DC-SRF photocathode injector
- 3.5 cell Injector cryomodule and testing beam line
- Preliminary RF and beam testing of DC-SRF gun
- Summary

Fabrication and test of 3.5 cell cavity

Deep drawn, precise machining, high vacuum electron beam welding

Fabrication and test of 3.5 cell cavity

Fabrication and test of 3.5 cell cavity

Large grain 3.5 cell Nb cavity of 23.5 MV/m @ $Q_0 > 1E10$ after BCP, HPR and baking 2 hrs at 800°c by Dr. R. Geng at J-Lab

Meanufacture and assembling of cryomodule

1: photocathode transportation line ; 2: LHe buffer and two phase tube; 3: LIN buffer and LIN thermal shield ; 4: DC part; 5: suspending structure; 6: vacuum vessel; 7: main coupler and tuner

Meanufacture and assembling of cryomodule

Leak check after assembling of DC high voltage feedthrough and beam pipe

HPR in clean room

Meanufacture and assembling of cryomodule

Magnetic field along the axis of the tank

On-line photocathode preparation system

Cs2Te photocathode is prepared on stainless steel substrate, Substrate is heated to 120°C and the vacuum is $\sim\!5\!\times\!10^{-7}$ Pa

Drive laser system

Seed laser is commercial picosecond oscillator (Time-Bandwith GE-100) and was upgraded. Upgraded system compose of amplifier, SHG, FHG, lenses, control system and cooling system

Drive laser system

The laser output power: seed laser (1064nm) 5W, after amplified ~40W, green light (532nm) >10W, UV light (266nm) >1W

Repetition rate: 81.25MHz

- ERL project at Peking University
- Design of DC-SRF photocathode injector
- 3.5 cell Injector cryomodule and testing beam line
- Preliminary RF and beam testing of DC-SRF gun
- Summary

2K cryogenic system at Peking University

Main parts from Linde, transfer lines made in China, cooling capacity: 58W @2K Heat load of the 2K transfer lines: <0.5W/m

2K cryogenic system at Peking University

Control diagram of the 2K cryogenic system

October 2010: Successful 2K operation without cryomodule January 2011: Successful 2K operation with cryomodule

RF test of the 3.5cell cavity DC-SRF injector

 $Qe = 5 \times 10^6$, f = 1300.48 MHz

RF test of the 3.5cell cavity DC-SRF injector

f = 1300.48MHz, Eacc~11MV/m, limited by RF power

QE of photocathode

The UV laser power on the surface of the photocathode is about 0.1 W, and the photocurrent is 350 uA

No degradation was found during the two weeks' experiment

Beam test of the 3.5cell cavity DC-SRF injector

➢Beam energy~2.5MeV, current~50µA

>Aperture diaphragm was used to reduce laser power

Beam test of the 3.5cell cavity DC-SRF injector

Slit technique was used for beam emittance measurement

Initial results is 5~7mm-mrad

- An upgraded DC-SRF gun was designed, manufactured and installed for SETF at Peking University
- Preliminary RF and beam test show promising result
- Further experiments will be carried out with improved drive laser system, 20kW solid state RF amplifier and modified test beam line

- For design of the cryostat of the injector, we would like to thank FZD people and Dr. Proch from DESY for their help
- For cavity vertical RF measurement, we would like to thank Dr. Bob Rimmer, Dr. R.L. Geng and Dr.Peter Kneisel, etc. from JLab

Thank you!

Main coupler

- Capacitive coupling structure referred to KEK proposed coupler structure in 2005
- Four parts connected by flanges
- Disk ceramic window, without contacting inner conductor characteristics:
- 1. Simple window structure, easy to fabricate
- 2. Inner conductor at low temperature, heat load small
- 3. Stress on ceramic window not strong
- 4. Convenient for assembly and maintenance