Millimeter Wave Microwave Devices for Electron Cyclotron Resonance Ion Sources

G.G. Denisov, Yu.V.Bykov, S.V. Samsonov, , I.G. Gachev, M.Yu.Glyvin, A.G. Eremeev, V.V. Holoptsev, E.M.Tai

Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia, GYCOM Ltd, Nizhny Novgorod, Russia

OUTLINE

- Gyrotron. State of the art. ITER gyrotron.
- Moderate power gyro-devices. Examples.
 - ***** Low frequency gyrotrons for technology. Second harmonic.
 - * Higher frequency gyrotrons for tecnology. First harmonic.
 - ✤ Gyro-TWT

Gyro-devices

Extraordinary high average power at mm and submm wavelengths

Main applications:

- ECW systems for plasma fusion installations (70-170GHz/1MW)
- Technological applications (ceramics sintering, ... 24-80 GHz/3-30kW) CVD diamond films
- Plasma physics and plasma chemistry

(multi-charged ion sources...)

- DNP spectroscopy
 - (263, 394, 526 GHz, 10-100W) ampl., 35; 94 GHz / 10kW av.
- Radar systems

Discussions and studies

- Ultra violet sources
- Future linear accelerators
- Medicine
- ADS

•

submm, 100 kW, pulse amp. 30 GHz/100 MW/1mcs submm. 1-100 W 94 GHz / >100kW

Gyrotrons for ITER

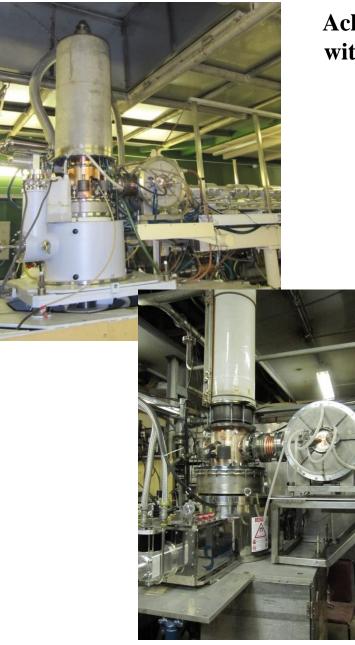
The main specifications of the gyrotrons for ITER are described below:

Item	Specification	
Nominal output power	\geq 0.96 MW at MOU output	
Nominal frequency	170±0.3 GHz (TBD) including initial transient phase	
Pulse length	400/1000/3600 sec (TBD)	
RF power generation efficiency	\geq 50 % (with collector potential depression)	
Gaussian content	>95 % at output waveguide (63.5 mmø) of MOU	
Power modulation	1 kHz (cathode); 5 kHz (anode)	

For more details see Technical specifications (<u>https://user.iter.org/?uid=4GV66L</u>)

Russia, Japan, EU are (each team) to deliver 8 gyrotron sets to ITER:

Gyrotron, SC magnet, cathode and collector coils, support, water manifold, aix. power supplies, control system, ...


The most developed gyrotrons are the devices for ITER. The gyrotron prototypes for ITER showed parameters corresponding to ITER requirements (see Table 1).

Now the main part of activity is enhancement of reliability and integration in ITER EC system

Table 1. Gyrotrons for ITER, 170 GHz

Main results	Institution/Company
1 MW / 55 % / 800 s and 0.8 MW / 57 % / 3600 s	JAEA/Toshiba,
	Japan
1 MW / 53 % / 1000 s and 1.2 MW / 53 % / 100 s	IAP/GYCOM,
	Russia

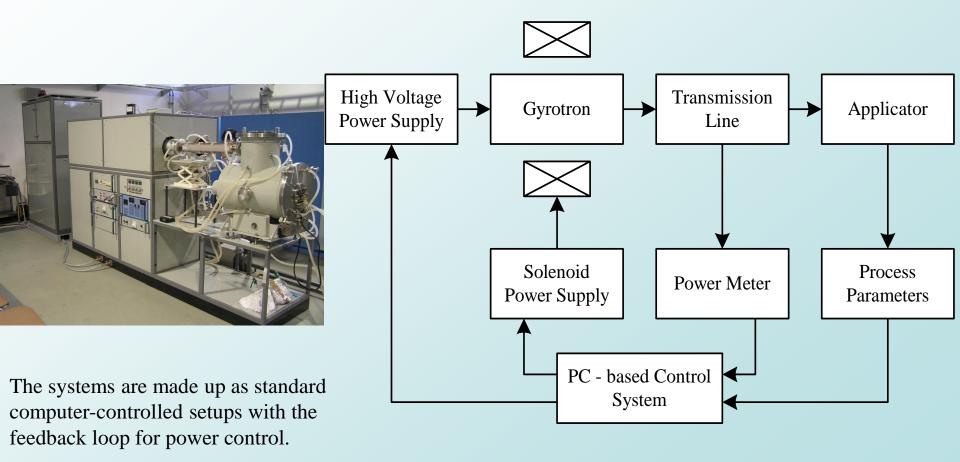
Achievement of ITER relevant parameters with RF gyrotron

In the last five years four gyrotron prototypes were fabricated and tested

with

CRYOMAGNETICS (USA) and JASTEC (Japan) LHe–free magnets

It is important to note that all gyrotrons demonstrate very similar output parameters


Also 140GHz; 110GHz, 105GHz, 82GHz, 70GHz, 60GHz, 42 GHz, ...

Second Harmonic Gyrotrons for Technological Applications

At present more than 40 systems produced jointly by the IAP and Gycom Ltd. are operating throughout the world. Output power ranges are usually from 3 to 15 kW at frequencies 24 – 30GHz.

Main features of low frequency CW gyrotrons

Output mode Number of harmonic Type of the magnet

Operating frequency Output power Accelerating voltage Anode voltage Beam current waveguide operating mode 2 electromagnet with water or oil cooling, permanent magnet

24 – 30 GHz <25 kW <25 kV <10 kV <2.5 A

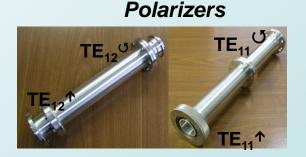
Low frequency CW gyrotron systems deliveries by GYCOM

			Freq., GHz	Power, kW	Year
1	Karlsruhe, Germany	FZK	30	10	1994
2	Los Alamos, USA	LANL	30	10	1996
3	Albuquerque, USA	Sandia NL	30	10	1996
4	Livermore, USA	General Atomics	30	10	1997
5	Menhang, China	IAPh CAS	30	10	1998
6	Fukui, Japan	FIR	24	3	2001
7	Grenoble, France	IN2P3	28	10	2003
8	Osaka, Japan	Osaka Univ.	24	3	2003
9	Osaka, Japan	Osaka Univ.	24	3	2004
10	Ochiai, Japan	Alloy Industries Inc.	28	10	2004
11	Osaka, Japan	Kinki Univ.	24	3	2005
12	Matsue, Japan	SIIT	24	3	2005
13	Fukui, Japan	FIR	28	15	2006
14	Albuquerque, USA	Thor Technologies, Inc.	24	5	2006
15	Kawasaki, Japan	Isman J Corp.	24	3	2006
16	Sendai, Japan	Tohoku Univ.	24	3	2006
17	Darmstadt, Germany	GSI mbH	28	10	2007
18	Okayama, Japan	Okayama Univ.	24	3	2007
19	Milan, Italy	IFP	28	15	2008
20	Lanzhou, China	IMP CAS	24	7	2009
21	Novosibirsk, Russia	CCU NSU	24	5	2009
22- 30					2010- 2014

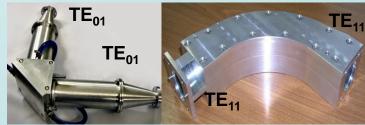
5 kW 24 GHz Gyrotron-based system for materials processing

5 kW 24 GHz system with a permanent magnet

 $\begin{array}{ll} f \leq 40 \; GHz \; - \; ``warm'' (water or oil cooled) \; solenoid or \; permanent magnet \\ & (\; magnetic \; field \; for \; second \; harmonic \; operation \; \sim \; 0.5 \; T) \\ f \geq 40 \; GHz \; - \; superconducting \; solenoid (LHe \; or \; LHe- \; free, \; last \; one \; consumes \; 5-10 \; kW) \end{array}$


Oversized transmission lines $(a_{\perp} >> \lambda)$ made as a set of quasi-optical mirrors, **multimode waveguides** and often their combination **DC breaks 20-60 kV**

Efficiency of the millimeter-wave power transport through lines is normally 0.95-0.98. **Very advanced synthesis codes** are used for the design of TL.


Design of a transmission line depends on the trajectory, functions and field structure a **customer wants** to have in the applicator

Some TL components

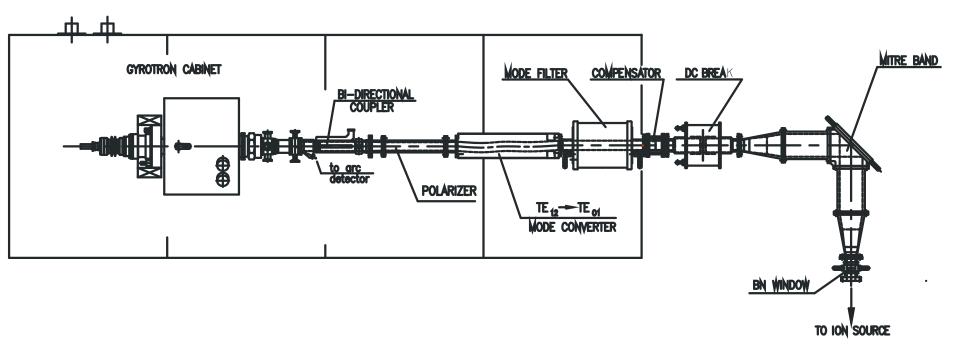
Bends with efficiency over 0.99

Example (2009)

The major output characteristics of the electron cyclotron resonance ion sources (ECRIS), such as the total ion current and the mean ion charge, could be improved with an increase in frequency of the applied microwave power. Recently experimental verification of the frequency scale up has been extended to frequencies of 28 GHz.

Microwave power of the order of several or tens of kilowatts in CW regime, required for feeding of ECRIS aimed to practical use, can be provided at frequencies of about tens GHz with gyrotrons only.

Gyrotron-based system with output power of 7 kW at frequency of 24 GHz has been developed by the Institute of Applied Physics jointly with GYCOM Ltd for powering the SECRAL Superconducting ECR Ion Source of the Institute of Modern Physics, China Academy of Sciences, Lanzhou.

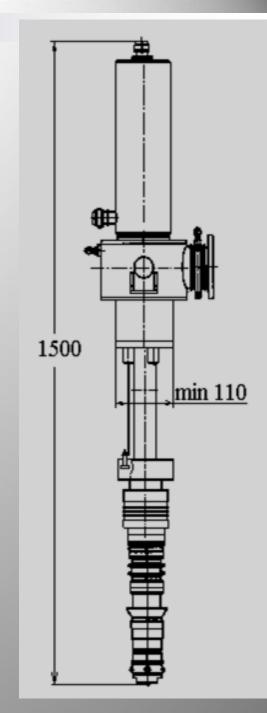

MAJOR TECHNICAL CHARACTERISTICS

Operating frequency	24 GHz ± 50 MHz			
Operation regime	either CW or pulse mode			
Output microwave power	0.1 kW – 7 kW, smoothly controlled			
Output mode/Mode entering ion source	TE ₁₂ / TE ₀₁			
DC break in transmission line	40kV			
Mode purity (whole system)	98% minimum TE ₀₁ , 2% other modes			
Power adjustability	100 W 7 kW with an increment 25 W			
RMS ripple	≤1%			
Power stability vs time*	better than 0.25 dB/24 h			
Power stability vs temperature*	better than 0.05 dB/°C in the range 20 °C – 30 °C			
Power stability vs mains voltage*	less than 1% for a mains variation of \pm 20 V			
Pulse mode operation				
Fall time RF / Rise time	< 30 µs / < 500 µs			
Pulse duration RF	5 – 100 ms or CW			
Repetition rate	$1 - 10 \text{ s}^{-1}$			

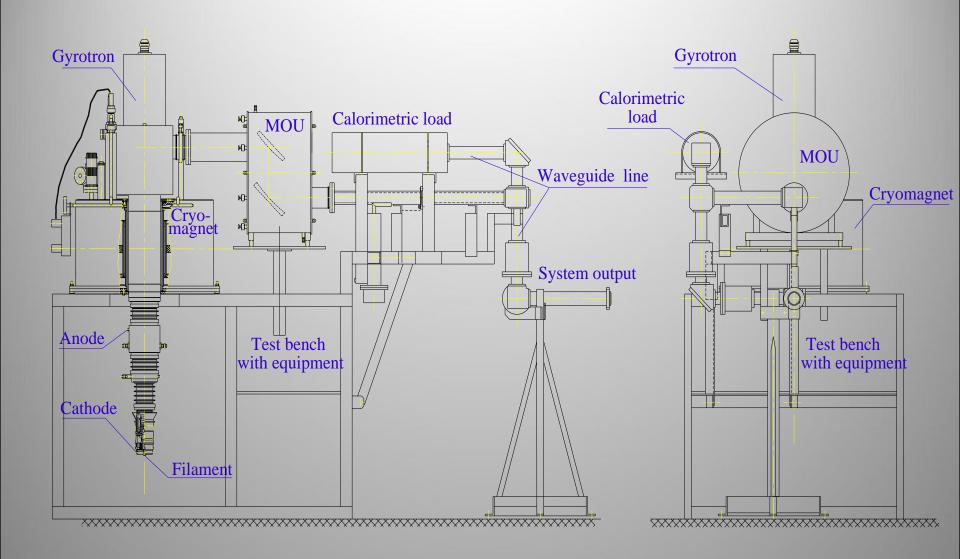
24 GHz gyrotron for ECRIS. Microwave components of the setup.

Example (2009)

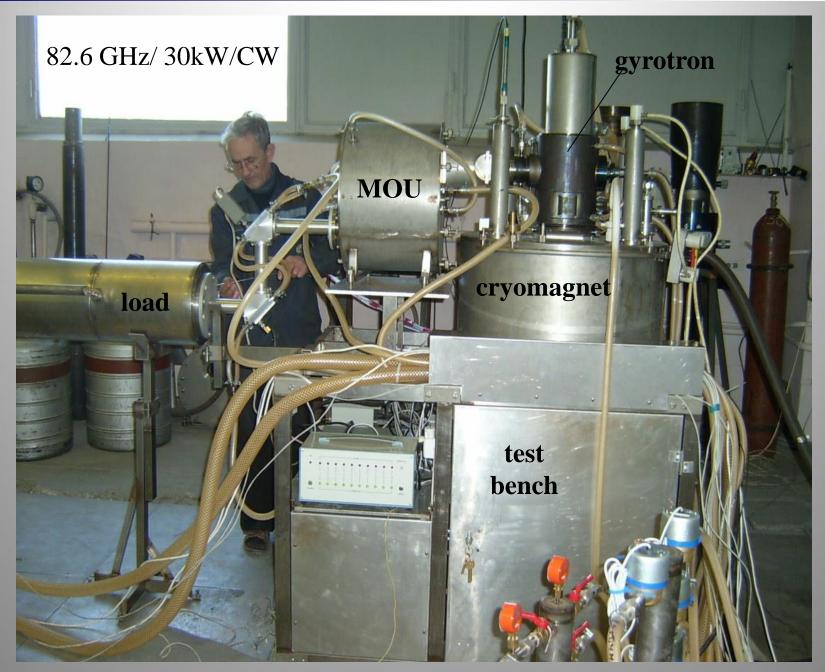
24 GHz gyrotron system for ECRIS at factory tests



Frequency and power rise of CW gyrotrons by operation at first harmonic in cryomagnets

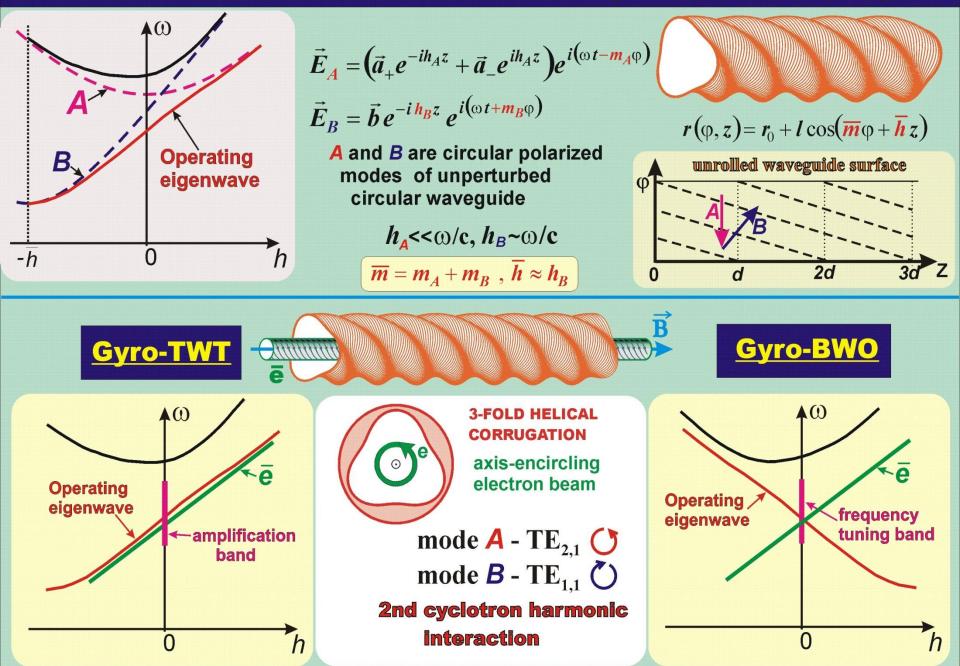

Main features of CW gyrotrons at cryomagnets

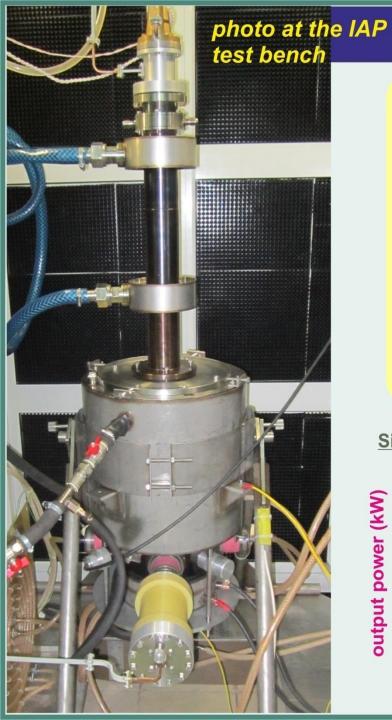
- triode-type electron gun
- gyrotron is installed in cryomagnet warm bore from cathode side
- lateral direction of output Gaussian wave beam by quasi-optical build-in converter
- setting diameters in cryomagnet bore 110 140 mm
- efficiency of gyrotron 50-60 %



Typical scheme of gyrotron system

Assembling of 30 kW CW gyrotron complex. Gyrotron block.

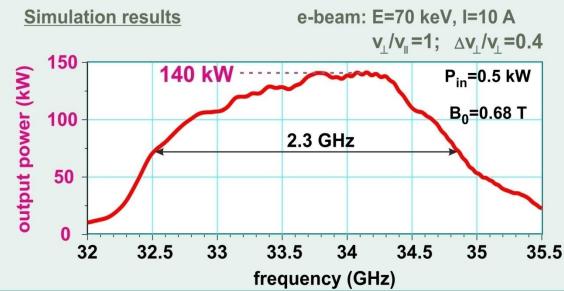

Gyro-amplifiers


More difficult than oscillators

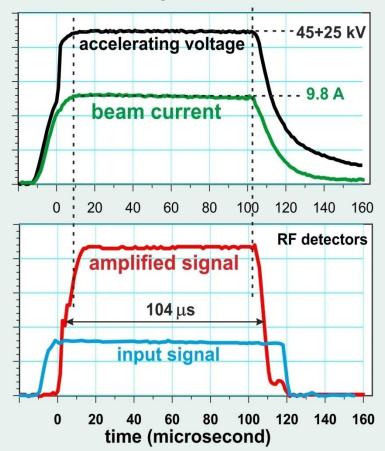
Helical-waveguide gyro-TWTs

- principles
- recent activity at IAP/GYCOM

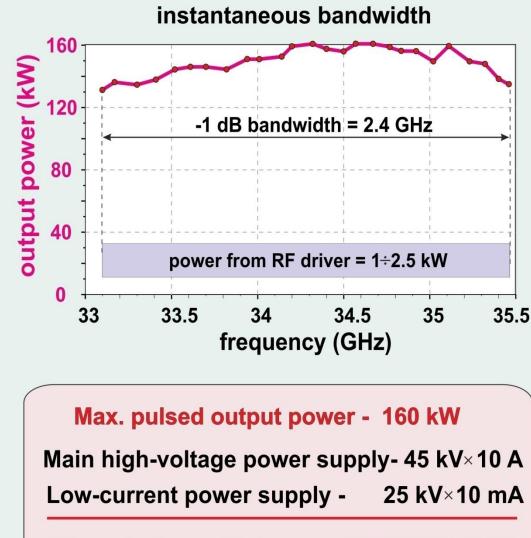
Realization of the Favourable Wave Dispersion: Waveguide with Helical Corrugation



Pulsed Gyro-TWT

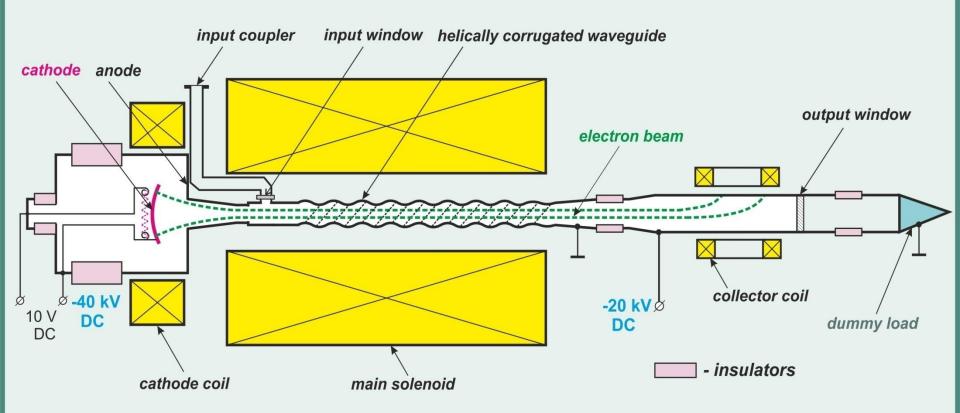

Design parameters

Accelerating voltage 70 kV
Retarding (SSDC) voltage >20 kV
Beam current < 10 A
Magnetic field 0.7 T
Input RF power ~1 kW
Pulse length100μs
Max. average beam power63 kW
Max. average output power15 kW


Pulsed Gyro-TWT. Low duty results.

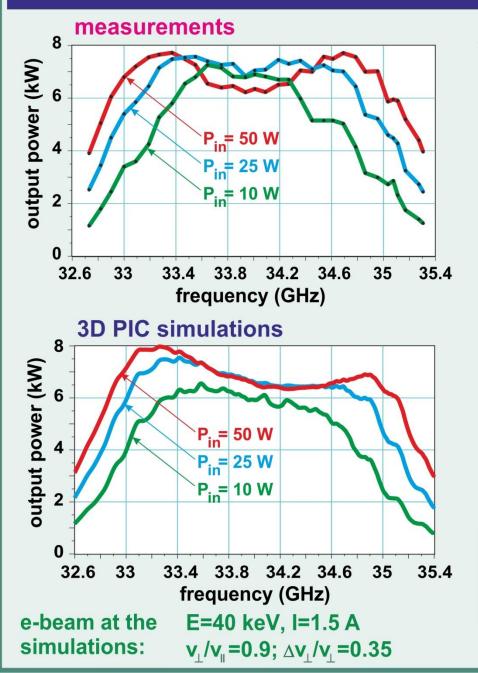
scope traces

pulse repetition frequency = 10 Hz (duty-factor = 0.1%)

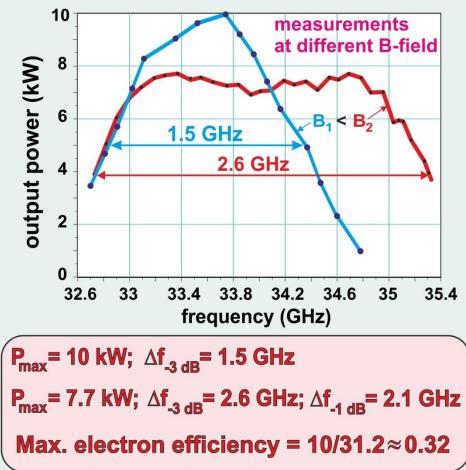

limited by the high-voltage modulator and RF driver

Max. electron efficiency = $160/450.2 \approx 0.36$

CW Gyro-TWT


Scheme

50% energy recovery using a single-stage depressed collector (SSDC)


- anode and tube body are grounded
- collector is under retarding potential
- accelerating voltage is applied to the cathode by a low-current highly-stabilized 40-kV DC power supply

CW Gyro-TWT. Experimental results.

External parameters:

Main power supply......20 kV × 1.5 A= 30 kW Low-current power supply...40 kV × 30 mA=1.2 kW Solenoid power supply......180 V×125 A = 22.5 kW RF driving source (preamplifier)......100 W (max.)

Summary

Gyrotrons by IAP/GYCOM :

Fusion

170 GHz, 1 MW/1000sec + other frequencies

Technology (examples)

- ◆ 24 GHz ; 28 GHz/10kW/ CW
- ◆ 82.6 GHz / 25 kW/ CW
- ◆ 60 GHz double regime: 300kW /0.1-10 ms and 20 kW/CW
- ◆ 300 GHz/ 3 kW/ CW

◆ Ka band / 2GHz/ 7kW /CW amplifier

Gyro-oscillators: any frequency (20-200 GHz); any power (1kW-1MW) Gyro-amplifiers : 20-40 GHz/ ~10 kW/ δf~ 2 GHz

Gyrotron developers are waiting for ECRIS requests