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R. Rácz et al., Plasma Sources Sci. 
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Therefore we decided to combine the two methods:  
plasma electron cloud is simulated in a given ECRIS configuration 

 and  
the coordinates of these electrons are used as 
the starting positions of ions to be extracted.  
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Kitagawa A. et al: Optimization of the radial magnetic field of an 18 GHz electron cyclotron resonance ion source 

at the Heavy Ion Medical Accelerator in Chiba. Review of Scientific Instruments 71 (2000)2:981-983 

An early trial 

It was assumed the 

highly charged ions 

are localized inside 

of the ECR zone 

and the ion 

trajectory from the 

ECR zone to the 

extraction aperture 

is tightly bound the 

magnetic flux line.  
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The ECRIS to be simulated 
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Plasma chamber length: 187 mm 

Plasma chamber diameter: 63 mm 

Injection coil current:  1100 A 

Extraction coil current:  1100 A 

Hexapole materials (VACODYM): 745HR/655HR 

GSI-CAPRICE, 14.5 GHz, 1.2 Tesla 
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ECRIS plasma electrons simulation 

• TrapCAD code: since 1994… 

• More than 20 users 

• „Multiple-one-particle” code 

• Realistic magnetic field  (2D-3D) 

• Stochastic ECR heating 

• Magnetic field: PoissonSuperfish 

• Only electrons 

• Plasma potential not included 

• Collisions not included 
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TrapCAD demonstration: 50000 electrons, 10 sec 
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GSI-CAPRICE plasma electrons simulations 
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Start position (resonant surface) 5200 +/- 200 gauss 

Perp. energy components:   1 - 100 eV, random 

Parallel energy components:  1 - 100 eV, random 

RF frequency:    14.5 GHz 

RF power:   1000 W 

Simulated time:   200 ns 

Number of lost particles:   2396026 (59.9 %) 

Number of non-lost particles: 1603974 (40.1 %) 

Average energy of lost particles: 118 eV 

Av. energy of non-lost particles: 2753 eV 
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The axial distribution of the non-

lost electrons. Left: injection side. 
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GSI-CAPRICE plasma electrons simulations 

Radial (side-view) projection of the electron cloud from the direction of a 
magnetic gap (left) and from a magnetic pole (right). 
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GSI-CAPRICE plasma electrons simulations 

Radial (side-view) projection of the electron cloud from the direction of a 
magnetic gap (left) and from a magnetic pole (right). 

Axial (end-view) projection of the non-lost electrons. Left: all electrons, middle: warm 
electrons (3 keV <E< 10 keV), right: warm electrons close to the extraction side (Z>13cm). 

The goal and the most important result of the TrapCAD 
simulation was the creation of the huge non_lost.txt ASCII 
file containing the starting and ending coordinates (x, y, z) 

and the starting and ending energy (parallel, perpendicular, 
total) of all non-lost electrons.  

 
This file was used as basic database for the simulation of the 

ions extraction. 
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The KOBRA3-INP Code 
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KOBRA-3 generate emittance plots.  

 

Projection of the 6-dimensional phase space 

into the 2D drawing plane.  

 

Example: vertical emittance  

Ɛy = ʃʃʃʃ f(y,y’) dx dz dx’ dz’  

Other projections are also important for 

accelerators. 

 

Coupling from the y-plane to the 

perpendicular one.  

 

Ƥy = ʃʃʃʃ f(y,z’) dx dz dx’ dy’  
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Ray-tracing by KOBRA 
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GSI-CAPRICE, typical trajectory plot. The 

ions are coming from deep inside the 

plasma. Black are particles coming from 

the injection side, blue from the middle, 

green and yellow from the extraction side. 

The emittance calculations are performed 

at 30cm. 

All emittances are 
given x=30 cm, y=3.5 

cm, z=3.5 cm 
 (beam direction: x) 
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GSI-CAPRICE, typical trajectory plot. The 

ions are coming from deep inside the 

plasma. Black are particles coming from 

the injection side, blue from the middle, 

green and yellow from the extraction side. 

The emittance calculations are performed 

at 30cm. 

Ion Extracted 
(%) 

Disc space 
(GB) 

Ar+ 14 26 

Ar3+ 12 34 

Ar5+ 10 28 

proton 7 35 

All emittances are 
given x=30 cm, y=3.5 

cm, z=3.5 cm 
 (beam direction: x) 
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Result-1: real space emittance plots 
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The typical structure of an 

ECRIS beam is visible already 

without space charge effects. 
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Figure 9.  Real space (y-z) emittance plots. Up: all charge 

states. Down: individual charge states. 
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Result-2: angular momentum space emittance plots 

Momentum space (y’-z’) plot. 
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Result-3: classical emittance plots 

One of the transverse emittances, y-y’.  
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Left real profile (y-z), middle horizontal emittance (y-y’), right: horizontal mixed phase space 

(y-z’). First row: a slit selects ions only close to the vertical center, second row a slit selects 

ions from a negative vertical location. 

The emittance with the above given definition for each charge state is much larger than 

the emittance given by the pepper pot definition. If the emittance diagnosis is limited to 

slices between n*dy and (n+1)*dy it can be seen, that it consists of a serious of emittance 

figures with much smaller size.  



Horizontal emittance (y-y’) depending on the slit position 

Superposition of 50 slit 

emittance figures 
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Result-4: mixed phase space emittance plots 

Mixed phase space y-z’.  
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• Our work showed that to do a realistic ion extraction simulation it is necessary 

and possible to start the ions from inside the plasma chamber.  

 

• The starting positions of the ions are developed by positions of the plasma 

electrons.  

 

• The first ray-tracing and emittance diagrams are very promising because the 

known structure of an ECRIS beam could be reproduced.  

 

• In the next steps the following tasks are planned to be carried out:  

• introducing space charge,  

• energy filtering of the electrons,  

• concentration to specific charge states,  

• improvement of diagnostic properties in the simulation (pepper pot 

diagnostic) 

• further comparison with experiments.  


