Paper | Title | Page |
---|---|---|
MOPPH015 | Production and Acceleration of Titanium-50 Ion Beam at the U-400 Cyclotron | 64 |
|
||
Funding: *Work supported by Russian Foundation for Basic Research under grant number 13-02-12011 The production of Ti-50 ion beam with ECR ion source using MIVOC method is described. The experiments were performed at the test bench with the natural and enriched compounds of titanium (CH3)5C5Ti(CH3)3. The compounds were synthesized in collaboration with IPHC (Strasbourg) group. In the experiments at the test bench the beam currents of Ti5+ - 80 mkA and Ti11+ - 70 mkA were achieved at different settings of the source. After successful tests two 3 weeks runs with Ti-50 beam were performed at the U-400 cyclotron for the experiments on spectroscopy of super heavy elements. The intensity of the injected beam of 50Ti5+ was about of 50-60 μA, during experiment the source have shown stable operation. The compound consumption rate was determined to be about of 2.4 mg/h, corresponding to 50Ti consumption of 0.52 mg/h. |
||
MOPPH016 | Modernization of the mVINIS Ion Source | 68 |
|
||
The mVINIS ECR ion source was designed and constructed jointly by the team of specialists from FLNR JINR, Dubna and Laboratory of Physics, Vinča Institute, Belgrade. It was commissioned and put in operation in 1998. From that time it was widely used in the field of modification of materials by different kinds of multiply charged ions. Recently we decided to modernize mVINIS in order to improve its operation reliability. Our main goal was to refurbish its major components (vacuum pumps, microwave generator, control system etc.). Besides, we decided to enhance basic construction of the ECR ion source in order to improve the production of multiply charged ion beams from gaseous and solid elements. We changed the shape of the plasma chamber and consequently reconstructed the magnetic structure. Also we improved the construction of the injection chamber. All these improvements resulted in substantial increase of ion beam intensities, especially in the case of high charge state ions. | ||