Paper | Title | Page |
---|---|---|
MOPPH002 | Production Of Metallic Stable Ion Beams For GANIL And SPIRAL2 | 45 |
|
||
GANIL has been producing many stable beams for nearly 30 years. Constant progress have been obtained in terms of intensity, stability and reliability. The presentation highlights recent results obtained for 50Ti beam production from an organo-metallic compound using the MIVOC (Metallic Ions from Volatile Compounds) method with the ECR4 ion source. The synthesis of this compound has been studied and realized by the IPHC-Strasbourg team from isotopically enriched titanium metal. Preliminary tests using natural titanocene were performed to validate the production method in terms of beam intensity, stability and reliability. Results obtained allowed us to program a physics experiment in September 2013. A 50Ti10+ beam was maintained stable for 300 h with a mean intensity of 20 μA. Q/A=1/3 ion source of SPIRAL 2 facility, whom commissioning will be led by end of 2014, is Phoenix V2 ion source which has been developed by LPSC-Grenoble. Results obtained for nickel (58Ni19+) and calcium (40Ca16+) in collaboration with LPSC Grenoble will be presented in this report.
CNRS - Centre national de la recherche scientifique. 3, rue Michel-Ange 75794 Paris cedex 16 - France CEA, Commissariat à L'Energie Atomique Bâtiment Le ponant D - 25 rue Leblanc 75015 PARIS |
||
MOPPH015 | Production and Acceleration of Titanium-50 Ion Beam at the U-400 Cyclotron | 64 |
|
||
Funding: *Work supported by Russian Foundation for Basic Research under grant number 13-02-12011 The production of Ti-50 ion beam with ECR ion source using MIVOC method is described. The experiments were performed at the test bench with the natural and enriched compounds of titanium (CH3)5C5Ti(CH3)3. The compounds were synthesized in collaboration with IPHC (Strasbourg) group. In the experiments at the test bench the beam currents of Ti5+ - 80 mkA and Ti11+ - 70 mkA were achieved at different settings of the source. After successful tests two 3 weeks runs with Ti-50 beam were performed at the U-400 cyclotron for the experiments on spectroscopy of super heavy elements. The intensity of the injected beam of 50Ti5+ was about of 50-60 μA, during experiment the source have shown stable operation. The compound consumption rate was determined to be about of 2.4 mg/h, corresponding to 50Ti consumption of 0.52 mg/h. |
||