Scintillating Screen Applications in Beam Diagnostics

Workshop Summary

<u>Beata Walasek-Höhne,</u> GSI Darmstadt Gero Kube, DESY Hamburg

The workshop on "Scintillating Screen Applications in Beam Diagnostics" organized by DESY, GSI and HIT and recently held at GSI gave a possibility to exchange ideas, to report on recent developments and to communicate experiences.

It provided the opportunity to continue and enhance discussions with the experts from different accelerator facilities, material science and suppliers.

- two days
- more than 50 participants
- more than 15 institutes
- website: http://www-bd.gsi.de/ssabd

GSI

There is a long history of scintillator applications in particle detection. Traditionally used in physics, scintillators today serve many purposes in science and engineering (e.g. medicine, geophysics, beam diagnostics...).

Scintillators are installed in all accelerator laboratories around the world.

- \rightarrow In hadron and low energy electron machines scintillators are mainly used for transversal beam profile determination.
- \rightarrow In modern LINAC-based light sources the interest in scintillators was recently revived when coherent effects were discovered that spoil the standard OTR measurements.

- General introduction to scintillating materials
- Scintillation mechanism
- **Applications in beam diagnostics**
- **Experience at hadron machines**
- **Experience at electron machines**

Scintillation: the process in which energy deposited in a material, e.g. by a charged particle, is converted into photons

Scintillation: the process in which energy deposited in a material, e.g. by a charged particle, is converted into photons

Solid

Scintillation: the process in which energy deposited in a material, e.g. by a charged particle, is converted into photons

Physical state:

- Solid
- Liquid

Scintillation: the process in which energy deposited in a material, e.g. by a charged particle, is converted into photons

Physical state:

- Solid
- Liquid
- Gas

F. Becker WEOD1

Scintillation: the process in which energy deposited in a material, e.g. by a charged particle, is converted into photons

Physical state:

- Solid
- Liquid
- Gas

F. Becker WEOD1

Composition:

- Organic

18.05.2011 / DIPAC 2011 Hamburg

Scintillation: the process in which energy deposited in a material, e.g. by a charged particle, is converted into photons

Physical state:

- Solid
- Liquid
- Gas

F. Becker WEOD1

Composition:

- Organic
- Inorganic

18.05.2011 / DIPAC 2011 Hamburg

18.05.2011 / DIPAC 2011 Hamburg

- **General introduction to scintillating materials**
- Scintillation mechanism
- **Applications in beam diagnostics**
- **Experience at hadron machines**
- **Experience at electron machines**

Interaction steps within the scintillation process

• beam (electron, ions)

Interaction steps within the scintillation process

- beam (electron, ions)
- creation of hot electrons +

deep holes

Interaction steps within the scintillation process

- beam (electron, ions)
- creation of hot electrons +
 - deep holes
- multiplication:
- electron electron scattering and
- Auger process
- thermalization:
- electron phonon coupling

Interaction steps within the scintillation process

- beam (electron, ions)
- creation of hot electrons +
 - deep holes
- multiplication:
- electron electron scattering and
- **Auger process**
- thermalization:
- electron phonon coupling
- capture at doped atom and/or electron - hole pair creation

Interaction steps within the scintillation process

- beam (electron, ions)
- creation of hot electrons +
 - deep holes
- multiplication:
- electron electron scattering and
- Auger process
- thermalization:
- electron phonon coupling
- capture at doped atom and/or electron - hole pair creation

decay via photon emission

18.05.2011 / DIPAC 2011 Hamburg

18.05.2011 / DIPAC 2011 Hamburg

Scintillation efficiency

 $2E_o$

 E_{g}

0

 ΔE_{v}

 $E_c + \Delta E_c$

Scintillation efficiency

 E_{dep} - deposited energy

 βE_g – energy to create electron-hole pair

Energy efficiency

 $\eta_{\rm e} = (E_{hv} / \beta Eg) \cdot S \cdot Q$

 $E_{hv^{-}}$ energy of scintillation photon

Example of good scintillator:

For materials having transfer and luminescence efficiencies S and Q near unity and a scintillation photon energy approaching the one of the band gap, the energy efficiency should be \sim 25-30%

 10^{-14}

Absorption

Thermalization of electrons

> Thermalization of holes

> > 10^{-12}

Time, s

Inelastic electron

electron scattering

e scatterin; threshold

Auger processes & X-ray

fluorescence reabsorption

uger pr

thresl

 10^{-16}

[P. Lecoq: Inorganic scintillators for Detector systems]

Emission

Emission

 $c^* \rightarrow c + h\nu$

VALENCE BAND

CORE BAND

 10^{-8}

Interaction of

excitations

 $c^* + c^* \rightarrow c + c^*$

Transfer to

luminescence centre

Capture of electrons

and holes by different

traps, their self-

trapping, etc.

 $e + c^+ \rightarrow c^0 + ph$

 $h \rightarrow V_{\mu} + ph$

 10^{-10}

Scintillation efficiency of various scintillators

Material	Phonons/MeV	Wavelength (nm)	Efficiency (%)
Intrinsic			
Csl	2000	315	0.8
Self-activated			
CdWO ₄	15000	480	3.6
Bi ₄ GeO ₁₂	8200	480	2.1
Activated			
Nal:Tl	38000	415	11.3
CsI:TI	65000	540	13.7
LYSO:Ce	25000	240	7.4
YAG:Ce	16000	512	3.9

Complicated scintillation process is influenced by many factors:

Temperature: thermal guenching is related to electron-phonon interactions and radiationless processes.

Concentration: interaction between luminescence centers increases with their concentration in the material. Energy migration through nonradiative energy transfer can take place if concentration is high enough.

Impurities: e.g. killer ions can compete with active ions and limit the scintillation efficiency.

Local density-induced quenching: relaxation of electronic excitation can lead to the formation of nanometric scale regions containing several electronic excitation separated by short distance.

[P. Lecog: Inorganic scintillators for Detector systems]

- **General introduction to scintillating materials**
- Scintillation mechanism
- **Applications in beam diagnostics**
- **Experience at hadron machines**
- **Experience at electron machines**

Bandwidth of applications

huge application range for inorganic scintillators

very simplified comparison of scintillator usage

	lons	Electrons	"normal" usage
particle energy	1 keV -100 GeV/u	100 keV -10 GeV	till 10 GeV (PANDA)
spot size	1 mm - cm	10 µm - mm	1 – 100 cm
counts per pulse	10 ⁴ -10 ¹³	10 ⁷ -10 ¹⁰	< 10 ⁶
counts rate	high	high	medium
energy deposition	very large	medium	low
saturation effects	expected	possible	none
material modification	expected	possible	no

Scintillator characteristics of interest

- high efficiency for energy conversion •
- high dynamic range and good linearity between the incident particle flux and the light output
- emission spectra matches to the spectral response of light detector ۲
- no absorption of the emitted light to prevent artificial broadening by the stray light inside the material
- fast decay time, to enable observation of possible time dependent ۲ beam size variations
- good mechanical and thermal properties
- high radiation hardness to prevent damages ۲

Applications in beam diagnostics

Scintillating screens are widely used in accelerator facilities for transversal beam profile and precise single shot emittance measurements

- simple, reliable profile measurement system
- used for beam alignment
- most direct way of beam observation: complete 2D information

Profile measurements

Beata Walasek-Höhne GSI Darmstadt

G 5]

Typical realization from HIT

18.05.2011 / DIPAC 2011 Hamburg

Examples for beam profiles

Screen at LHC

Chromox screen at LHC, protons at 450 GeV

[U. Raich, CERN, CAS Lecture] [E. Bravin, CERN, Workshop]

Applications in beam diagnostics

Scintillating screens are widely used in_{14.5} accelerator facilities for transversal beam^{GHz} profile and precise single shot emittance measurements

- simple, reliable profile measurement system
- used for beam alignment
- most direct way of beam observation: complete 2D information

Ion beam spot at GSI ECR ion source during microwave frequency tuning

GSI

[J. Mäder, GSI, Workshop]

18.05.2011 / DIPAC 2011 Hamburg

Typical screen materials

Materials used in beam diagnostics applications

Name	Material	Max. emission	Decay time
BGO	Bi ₄ Ge ₃ O ₁₂	480 nm	300 ns
LYSO	Lu _{1.8} Y _{0.2} SiO ₅ :Ce	397 nm	41 ns+slow
YAG	Y ₃ Al ₅ O ₁₂ :Ce	512 nm	100 ns
P43	Gd ₂ O ₂ S:Tb	545 nm	1 ms
P47	Y₂Si₅O₅:Tb	400 nm	100 ns
Chromox	Al ₂ O ₃ :Cr	700 nm	1 ms

- **General introduction to scintillating materials**
- Scintillation mechanism
- **Applications in beam diagnostics**
- **Experience at hadron machines**
- **Experience at electron machines**

Screens for low energetic ion beams

Particles are completely stopped in the screen material, deposition of energy and charge in material may lead to heating problems and electrical charging

Screens at low currents

Systematical studies at different ion species with energies up to **11.4 MeV/u** and beam currents from some **nA** to some **mA**

built scintillators Purpose applicable for low currents

- \rightarrow different image reproduction
- \rightarrow but reproducible behaviors
- \rightarrow different width reading of 25%
- \rightarrow not suitable for higher currents

Beam parameters: ¹²C²⁺, 11.4 MeV/u, 5·10⁶ ppp in 100 µs, ~17 nA, 1500 pulses

Average temperature: 23°C (backside)

[E. Gütlich (GSI) et al., IEEE Transact. on Nucl. Science]

Screens at medium currents

Only ceramics can survive irradiation with medium and high current ion beams

- \rightarrow different image reproduction
- \rightarrow but reproducible behavior
- \rightarrow different light yield and width reading
- → light yield does not correlate with beam width
- \rightarrow different beam shape

Beam parameters: 40 Ar ${}^{10+}$, 11.4 MeV/u, 2·10⁹ ppp in 100 µs, ~30 µA, 1000 pulses Average temperature: ~47°C (backside of ZrO₂:Mg)

[E. Gütlich (GSI) et al., IEEE Transact. on Nucl. Science]

Screen coloration

Different materials showed different behavior during irradiation

- \rightarrow standard used Chromox was fading with time (not shown)
- \rightarrow Al₂O₃ light yield decreased with time
- \rightarrow ZrO₂ very stable behavior although coloration of surface

Screens at high currents

[E. Gütlich (GSI) et al., IEEE Transact. on Nucl. Science]

Screens at GSI – high currents

Damages due to heating e.g. ZrO₂:Mg

Phase transformation (monoclinic \rightarrow tetragonal)

 \rightarrow volume expansion (3-5%) \rightarrow micro-cracks in material

[R. Krishnakumar, GSI]

18.05.2011 / DIPAC 2011 Hamburg

Spectroscopic studies - Al₂O₃

Wavelength spectra and image reproduction for Al₂O₃

Screens for high energetic ion beams

Due to low energy deposition (dE/dx) in material, ceramics are compared with purpose built scintillators

Screens for high energetic ion beams

Due to low energy deposition (dE/dx) in material ceramics could be compare with purpose built scintillators

- **General introduction to scintillating materials**
- Scintillation mechanism
- **Applications in beam diagnostics**
- **Experience at hadron machines**
- **Experience at electron machines**

Electron machines

Optical Transition Radiation (OTR) diagnostics fail because of coherent effects

 \rightarrow profile diagnostics based on scintillating screens is needed

(a) OTR screen

S. Wesch WEOA01

(c) LuAG screen

[M. Yan et al., TUPD59]

FLASH, electrons at 700 MeV, 0.5 nC

18.05.2011 / DIPAC 2011 Hamburg

Electron machines

Optical Transition Radiation (OTR) diagnostics fail because of coherent effects

 \rightarrow profile diagnostics based on scintillating screens is needed

Comparison with OTR

[S. Rimjaem, PITZ, et al., TUPD54]

Beam parameters: electrons at 130 MeV, 200 pC

comparison to beam size measurement with OTR shows good agreement down to 60 µm rms

[R. Ischebeck, PSI, Workshop]

Electron machines

Optical Transition Radiation (OTR) diagnostics fail because of coherent effects

- \rightarrow profile diagnostics based on scintillating screens is needed
- \rightarrow ongoing search for optimum scintillator material
- \rightarrow influence of observation geometry for different materials (and thicknesses)

[G. Kube (DESY) et al., IPAC2010]

18.05.2011 / DIPAC 2011 Hamburg

Beata Walasek-Höhne GSI Darmstadt

Electron machines - MAMI

18.05.2011 / DIPAC 2011 Hamburg

Investigation of detector geometry

ZEMAX simulations

- \rightarrow propagation of light through material influences detected image
- \rightarrow satisfactory agreement between simulation and measurement

[G. Kube (DESY) et al., IPAC2010]

[M. Yan (U. of Hamburg) et al., TUPD59]

 \rightarrow an optimum screen tilt angle exists

Further improvement of the resolution of the system by simulations:

- observation geometry
- screen tilt
- screen material
- thickness of the screen
- focal plane

Example – observation geometry

Assumptions:

- line light source emitting isotropically, located inside the BGO crystal with the width of 10 μm
- total10⁸ rays at BGO peak emission wavelength 480 nm was traced
- → placing detector under 45° with respect to the beam axis seems to offer the best resolution
 → an optimum screen tilt angle exists

[M. Yan (U. of Hamburg) et al., TUPD59]

Example – material thickness

[M. Yan (U. of Hamburg) et al., TUPD59]

screen tilt 0 (deg)

Conclusions

Scintillation is a complicate process which can be influence by several factors

like e.g. temperature, concentration or impurities in material

still searching for a stable solution ٠

- \rightarrow the different materials represent different shapes for the same beam
- \rightarrow scintillators degrade (especially for low-energy ion beams)
- \rightarrow can we understand (predict) the damage mechanism?
- no "ideal" scintillator material ٠
 - \rightarrow most appropriate material varies from application to application

purpose build scintillators in electron machines

ceramics in hadron machines

response of various scintillating materials depend on many parameters such as energy, intensity, particle species and time structure of the beam

- correct observation geometry can significant improve the resolution ٠
- support from Crystal Clear Collaboration

Acknowledgment

18.05.2011 / DIPAC 2011 Hamburg

Thank you for your attention!

more details can be found on webpage of "Scintillating Screen Applications in Beam Diagnostics" Workshop http://www-bd.gsi.de/ssabd