Diagnostics during the ALBA Storage Ring Commissioning

<u>U. Iriso</u>, M. Alvarez, F. Fernandez, A. Olmos and F. Pérez

Accelerator Division, CELLS

10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators DIPAC11 - Hamburg, May 16-18, 2011

- 1. Introduction
- 2. Fluorescent Screens
- 3. Current Monitors
- 4. BPMs
- 5. Tune Measurement system
- 6. X-Ray Pinhole Camera
- 7. Visible Light Monitor

1. Introduction: ALBA Facility

1. Introduction: ALBA Facility

- ✓ Synchrotron Light Source in Barcelona
 ✓ Up to 30 beamlines (7 on day one)
 ✓ Full energy Booster for Top-up injection
 ✓ 3 GeV Storage Ring, 268m circumference
 ✓ Designed emittance: 4.3nm*rad
- ✓ Maximum design current: 400mA

- ✓ SR Commissioning started 8 March 2011
- ✓ BeamLine Commissioning Autumn 2011
- ✓ First Users: Spring 2012

1. Introduction: SR Commissioning

March 8th : Commissioning Start. (Shifts from 7am - 10pm)

March 9th : 1st Turn

March 13th : Stored Beam

March 16th : Beam Accumulated

March 16th : Synchrotron Light out to Diagnostics Hutch

April 1st: Stored 100mA

1. Introduction: Di components

Standard components:

Component	Acronym	# units
Fluorescent Screen "In-air"	FS	5
Fluorescent Screen Horizontal	FSH	2
Beam Position Monitors	BPM	123
DC Current Transformer	DCCT	1
Fast Current Transformer	FCT	1
Annular Electrode	AE	1
Stripline BPM	SBPM	1
Scraper (Hor & Ver)	SCRH & SCRV	1 & 1
Beam Loss Monitors	BLM	128
X-Ray Pinhole Camera	Pinhole	1
Visible Light Monitor	BL34	1

1. Introduction: Di location

LBA

At Injection Straight:

- 1. Introduction
- 2. Fluorescent Screens
- 3. Current Monitors
- 4. BPMs
- 5. Tune Measurement system
- 6. X-Ray Pinhole Camera
- 7. Visible Light Monitor

2. Fluorescent Screens

Conventional "in-air" model*

•YAG:Ce screen is kept inside a closed shaft that keeps it away from vacuum

•Inserted vertically with a pneumatic actuator

•Screen center, Optics and CCD camera (Ethernet Basler Scout) are in the same axis

*K. Scheidt. Upgrade of the ESRF Fluorescent Screens, Proc. of DIPAC'03.

2. Fluorescent Screens

\cdot Essential element to perform the 1st turn

U. Iriso

2. Hor Fluorescent Screens

- Lens YAG Motor injected bean stored be
- Located at Injection Straight
- Inserted horizontally with a motor
- Beam centroid inferred after beam analysis, adding calibration offset of YAG screen wrt stored beam
- Screen center, Optics and CCD camera are in the orbit plane

Location:
 FSH1: downstream septum
 FSH2: downstream kicker

2. Hor Fluorescent Screens

• Very useful during all commissioning to optimize injection efficiency through the calculation of injected and kick angle.

U. Iriso

- 1. Introduction
- 2. Fluorescent Screens
- 3. Current Monitors
- 4. BPMs
- 5. Tune Measurement system
- 6. X-Ray Pinhole Camera
- 7. Visible Light Monitor

3. Current Monitors

Fast and DC Current Transformers (FCT & DCCT):

1 turn = 896 ns

4 0 1

1 412 mV 🔶

g

- Mechanical design for ALBA SR in-house
- Coils: off-the-shelf products (Bergoz)
- Air-cooling circuit installed to prevent overheating
- Available from day-1 w.o. problems

3. DCCT Performance

DCCT Performance:

- DCCT rms noise: +/- 2uA
- DCCT sensible to dipole cycling and Ta drifts (+/-30uA)
- No overheating problems (so far, 100mA injected)

3. Current Monitors:

Continuously used to check machine performance
Example of analysis of a vertical instability:

SCRV closed from 10mm to 0.28mm produces beam losses (16mA) mainly in the last bunches of the train (suspected to be Fast Ion Instability)

- 1. Introduction
- 2. Fluorescent Screens
- 3. Current Monitors

4. BPMs

- 5. Tune Measurement system
- 6. X-Ray Pinhole Camera
- 7. Visible Light Monitor

- •7 or 8 BPM/cell (120 BPMs): orbit control and interlock system
- •2 BPMs for Bunch-by-Bunch Feedback System
- 1 spare BPM for Beam Dynamics (Tune measurements)
- BPM block is composed by 7mm diameter button type feedthroughs
 Small electrode size and button-shell gap to reduce buttons heating
- Semi-Rigid PEEK cables as transition from feedthrough to RF coax cables
- •Low-loss phase matched (<10deg) RF cables of wide variety of lengths [15m 45m]

4. BPMs

- •Reading Electronics: Libera Brilliance
- •Non-controlled temperature area/rack
- •Digital conditioning (DSC) and calibration not yet applied
- •BPMs used from SR commissioning day-1

Raw position meas during 40min @20mA:

4. BPMs

- BBA routine partially ran on BPMs (90/120 Ver, 96/120 Hor)
- Most of the offsets inside +/- 200um (some BPMs to be measured again or crosschecked by alignment team)

No slow orbit correction for the time being (use Orbit Correction Application from MML -> beam within +/-0.5mm)

- 1. Introduction
- 2. Fluorescent Screens
- 3. Current Monitors
- 4. BPMs
- 5. Tune Measurement system
- 6. X-Ray Pinhole Camera
- 7. Visible Light Monitor

5. Tune Measurement System

* U. Iriso, et al. Design of the stripline kickers for ALBA, Proc. DIPAC09

Diagnostics during ALBA SR Commissioning

5. Tune Measurement System

- Oscillations produced by a *white noise* signal around tune freq.
- \cdot Excitation are produced continuously \rightarrow no trigger or synchronization is required
- Very useful for beam dynamics applications (chromaticity measurements)

- 1. Introduction
- 2. Fluorescent Screens
- 3. Current Monitors
- 4. BPMs
- 5. Tune Measurement system
- 6. X-Ray Pinhole Camera
- 7. Visible Light Monitor

6. X-Ray Pinhole Camera

- Transverse beam sizes \rightarrow emittance measurements
- To avoid diffraction limit, use xrays from a bending magnet
- Magnification factor: 2

6. X-Ray Pinhole Camera

→ Water cooling for the 1mm thick Al-Window:

Max Heat Load: 4.7 W/mm² Max T^a: 129°C Max Stress: 79 MPa

→ Pinhole construction*: Two arrays of 4 W-bars, with slits spaced by [10, 50, 100um]

Placed perpendicular one to another

Four motors allow controlling pinhole position and chose the desired hole

*Thanks to K.Scheidt & F. Ewald(ESRF)

6. X-Ray Pinhole Camera

• Pinhole Commissioning took 1-day after stored beam.

Diagnostics during ALBA SR Commissioning

U. Iriso

6. X-Ray Pinhole Camera

2011.05.11: Ver and Hor Beam size continously monitored

- 1. Introduction
- 2. Fluorescent Screens
- 3. Current Monitors
- 4. BPMs
- 5. Tune Measurement system
- 6. X-Ray Pinhole Camera
- 7. Visible Light Monitor

Xrays

20es

through

7. Visible Light Monitor

•Radiation wavelength from a dipole emitted at different vertical angles

 Select the visible range by placing the mirror at different vertical position

•Mirror position (in-vacuum) controlled with thermocouples

Diagnostics during ALBA SR Commissioning

• At the Diagnostics Hutch:

→CCD: Reference beam image

→Streak Camera:
 Precisely infer longitudinal time bunch structure
 Slow sweep unit not yet working (image is integrated over 1ms)

FIRST SYNCHROTRON LIGHT!!

Diagnostics during ALBA SR Commissioning

FIRST SYNCHROTRON LIGHT!!

• Diagnostics components at ALBA combine off-the-shelf products with ad-hoc designs \rightarrow Easy Di Commissioning

- FS, FSH, FCT, DCCT, BPMs worked since day-1 of commissioning without problems
- Diagnostics FE (pinhole and visible light) worked right after beam was accumulated
- Diagnostics components at ALBA eased an efficient commissioning

Future plans:

- Fine adjustments to increase Di performance
- Implement Slow and Fast Orbit Correction
- Install Fast Feedback Kickers to correct CBI
- Streak camera measurements

→ thanks to the rest of the Accelerator Division (M.
Pont, G. Benedetti, Z. Marti, M. Munoz, D. Einfeld...)
→ thanks to people in other divisions: J. Pasquaud
(Engineering Div.), and D. Fernandez, S. Blanch, J. Moldes
(Computing Div.)

→ Thanks for the advices from many colleagues in other machines:
 G. Rehm and C. Thomas (Diamond), J.-C. Denard and
 L.Cassinari (Soleil), V. Schlott (SLS), K. Scheidt and F. Ewald

(ESRF), P.Kuske (BESSY)

Extra slides

U. Iriso

X-ray Sync. Rad. front end (XSR)

XSR or pinhole camera

- Transverse beam sizes \rightarrow emittance measurements
- Simple pinhole system (no need for pinhole array)
- Pinhole material: Tungsten
- Magnification factor: 2
- Al vacuum window + Cu sloped block to filter xrays ~ 18 keV

ALBA

Visible Sync. Rad. front end

- Need to build a mirror* with thermocouples to reflect just the visible part
- Light analysis is done in the optical hutch
- Bunch length measurements with streak camera
 - Qualitative beam image with CCD camera

*K.Scheidt, UV and Vis. Light diagnostics at the ESRF, Proc. of EPAC'96

BPM Buttons

	SR	Booster
Hor. Sensitivity (mm ⁻¹)	0.080	0.093
Ver Sensitivity (mm ⁻¹)	0.075	0.093
Capacitance (pF)	2.7	3.2
Intrinsic resolution (μ m)	11 (@0.1 mA and 4kHz)	45.5 (@0.1 mA and 1.2 MHz)

First 20 BPM buttons & Blocks just manufactured

¦ BPM block welded to vac. ¦ chamber

BPM electronics

- One type of electronics for one type of monitor
- Contract signed with I-Tech for all BPMs (SR, Booster, LTB, BTS) Keeps system simple, eases maintenance...
- Sub-micron resolution, stability depending on current, temperature...
- Slow & Fast Orbit Correction schemes
- BPMs equipped with data acquisition for:
 - -> Turn By Turn (1.1MHz)
 - -> Fast Orbit Correction (4 kHz)
 - -> Slow orbit Correction (4 Hz)
 - -> Post Mortem buffer
 - -> Other data acq. options on demand

TESTS STATUS:

- 30 Libera units & 4 Clock Splitters arrived for tests in Jan. 2007
- Res. around -40 dBm was out of the specs due to a wrong gain scheme → Corrected in 2 weeks →
 Acceptance Tests for approved for all units

Diagnostics during ALBA SR Commissioning