Experimental Studies of Resonance Crossing with a Paul Trap

<u>Hiroshi Sugimoto</u> (KEK) K. Fukushima, K. Ito, K. Moriya and H.Okamoto (Hiroshima Univ.)

Use a Paul Trap?

Paul trap found in Wikipedia.

Scheme of a Quadrupole ion trap of classical setup with a particle of positive charge (dark red), surrounded by a cloud of similarly charged particles (light red). The electric field *E* (blue) is generated by a quadrupole of endcaps (a, positive) and a ring electrode (b). Picture 1 and 2 show two states during an AC cycle.

http://en.wikipedia.org/wiki/Main_Page

Use a Paul Trap?

Paul trap found in Wikipedia.

Scheme of a Quadrupole ion trap of classical setup with a particle of positive charge (dark red), surrounded by a cloud of similarly charged particles (light red). The electric field *E* (blue) is generated by a quadrupole of endcaps (a, positive) and a ring electrode (b). Picture 1 and 2 show two states during an AC cycle.

This is exactly an AG focusing system!

http://en.wikipedia.org/wiki/Main_Page

09/18/2013

Outline

- 1. Introduction
 - Background and motivation
 - S-POD, an experimental tool for study of beam physics
- 2. Multi-particle Simulation
 - Resonance-band distribution in S-POD
 - Resonance crossing
- 3. Experiments
 - Resonance-band distribution in S-POD
 - Resonance crossing
 - Comparison with the multi-particle simulation

Background and Motivations

- Fixed-field accelerators have the potential to be a high-power accelerator owing to its high repetition rate.
- The beam optics potentially varies during the beam acceleration.
 - e.g. Non-Scaling FFAG (NS-FFAG) ring, EMMA
 Cell tune varies from ~0.3-4 to ~0.17
 The beam transverses one and more resonance bands.
- The resonance crossing may limit the machine performance.
- Past theoretical studies
 - Emitance growth is negligible or tolerable when the crossing speed is sufficiently high or/and the resonance is not so strong.

<u>Today's Talk</u>

Experimental (and numerical) studies on betatron resonance crossing *not* using any accelerators, but using a *plasma trap.*

Study Beam Dynamics with a Plasma Trap

Charged particle beam is...

a kind of non-neutral plasma confined in a machine.

After some algebra, we reach following two Hamiltonians

Charged particle beam (beam rest frame)

Non-neutral plasma (laboratory frame)

$$H_{beam} = \frac{p_x^2 + p_y^2}{2} + \frac{1}{2}K(s)(x^2 - y^2) + \frac{q}{M\gamma^3(\beta c)^2}\phi$$

$$H_{plasma} = \frac{p_x^2 + p_y^2}{2} + \frac{1}{2}K(\tau)(x^2 - y^2) + \frac{q}{Mc^2}\phi$$
with the Vlasov-Poisson equation
$$\tau \equiv c \times t$$

$$\frac{\partial f}{\partial t} + [f, H] = 0$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = -\frac{q}{\varepsilon_0}\iint f \, dp_x dp_y$$

We can use this physical equivalence to study beam dynamics.

H. Okamoto and H. Tanaka, NIM A 437 (1999) p.178.

CYCLOTRONS'13@Vancouver

Linear Paul trap

Advantages

- Very compact and low cost

 Several tens of thousands dollars
 for the whole system
- High flexibility of fundamental parameters
 Beam density, operating point, lattice function, etc.

- High resolution & high precision measurements
 - Faraday cup, micro-channel plate Laser induced fluorescence (LIF)

- Experiment with any strong beam instability.

Linear Paul Trap System at Hiroshima Univ.

S-POD - Simulator for Particle Orbit Dynamics –

- There are three S-POD systems
 - S-POD I : crystalline beam, nano-ion beam, etc.
 - S-POD II, S-POD III : resonant instability, etc.

Multi-sectioned linear Paul trap

Ion species : ⁴⁰Ar⁺ Operating frequency : 1 MHz RF amplitude : 0 ~ 92 V

Multi-sectioned linear Paul trap

Ion species : ⁴⁰Ar⁺ Operating frequency : 1 MHz RF amplitude : 0 ~ 92 V

1. ⁴⁰Ar⁺ ions are generated by electron impact ionization with an electron.

- 1. ⁴⁰Ar⁺ ions are generated by electron impact ionization with an electron.
- 2. Storage plasma W/ or W/O tune excursion.

- 1. ⁴⁰Ar⁺ ions are generated by electron impact ionization with an electron.
- 2. Storage plasma W/ or W/O tune excursion.
- 3. Shut down the bias potential on Gate to send the plasma toward a FC detector.

Stop-band Distribution in S-POD

Experiment

- Tune survey on # of surviving particle after 10msec storage.

Simulation

- Emittance growth after 0.1msec

Coherent resonance condition*

$$\left(v_0 - C_m \Delta v \approx \frac{n}{2m}\right)$$

m : mode number *n* : integer *C_m* : constant < 1

- The Instabilities at v₀~1/3 and 1/6 are likely enhanced by mechanical misalignment of electrodes in S-POD.
- Linear coherent resonance at v₀~1/4 is rapidly increased as the beam becomes denser.

* H. Okamoto and Y. Yokoya, NIM A 482 (2002) 51.

14

Stop-band Distribution in S-POD

Experiment

- Tune survey on # of surviving particle after 10msec storage.

Simulation

- Emittance growth after 0.1msec

Coherent resonance condition*

$$\left(v_0 - C_m \Delta v \approx \frac{n}{2m}\right)$$

m : mode number *n* : integer *C_m* : constant < 1

- The Instabilities at v₀~1/3 and 1/6 are likely enhanced by mechanical misalignment of electrodes in S-POD.
- Linear coherent resonance at v₀~1/4 is rapidly increased as the beam becomes denser.

* H. Okamoto and Y. Yokoya, NIM A 482 (2002) 51.

15

NS-FFAG EMMA and S-POD

EMMA

- Composed of 42 quadrupole-doublet cells along the ring.

- S-POD
 - 42 rf periods correspond to 1 turn around the EMMA lattice.
 - Possible to study the effects of the lattice symmetry breaking by superimposing one or more lower-frequency rf waves.

EMMA

S-POD

Resonance Crossing – Low Density – PIC Simulation with the WARP code*

Tune sweeping range (0.40 -> 0.17).

Tune depression

 $\eta = 0.99$

840 rf periods sweeping (= 20 turns along the EMMA ring)

Resonance Crossing – High Density – PIC Simulation

- Tune sweeping range (0.40 -> 0.17)
- 840 rf periods sweeping (= 20 turns along the EMMA ring)

Tune depression

 $\eta = 0.90$

Resonance Crossing - Crossing Speed Dependency – PIC Simulation

- Faster crossing mitigates degradation of beam quality.
- Serious emittance growth is caused by the linear coherent resonance even with rather fast crossing.

Resonance Crossing Experiment

Ions are ejected to the Faraday cup right after the tune sweeping.

Low density cases (green & blue)

- Ion losses are suppressed when the crossing speed is sufficiently high.
- High density case (red)
 - Ion Loss is not negligible even with rather high-speed crossing.

09/18/2013

CYCLOTRONS'13@Vancouver

Single Resonance Crossing

Single Resonance Crossing

- Linear coherent resonance at $v_0 \sim 1/4$
 - Ion loses are remarkably enhanced as particle number is increased.
 - This instability is instinct and independent of lattice errors.
 - Can be a troublesome issue for future high-density NS-FFAG beams.

Comparison with PIC Simulation on the Crossing of $v_0 \sim 1/4$ Resonance

Well reproduce the experimental curve.

- Slower crossing or higher density beam results larger particle losses.
- Even with rather higher crossing speed, ion losses are not negligible in highdensity beams.
- The performance of high-power NS-FFAGs maybe limited by this resonance.

Emittance Growth by the Crossing of $v_0 \sim 1/4$ Resonance - PIC Simulation -

 K-V beam can cross the resonance without large emittance growth as long as the tune depression and/or crossing speed is below the threshold value.

S-POD Application to Integer Resonance Crossing S.L.Sheehy *et al.*, IPAC'13 2677.

Crossing of multiple integer resonances in EMMA NS-FFAG.

CYCLOTRONS'13@Vancouver

- The S-POD system is employed to systematic study of betatron resonance crossing.
- Numerical campaign using the WARP PIC code is also conducted.
- As for low density beams, emittance dilution is negligible or tolerable when the crossing speed is sufficiently high or the resonance is not so strong.
- As for high density beams, linear coherent instability is dangerous even with rather high crossing speed.
- PIC simulation on emittance growth caused by the crossing of v₀~1/4 resonance.
 Gaussian, K-V Semi-Gaussian and Waterbag beams have same tendency.
 - K-V beam is the most stable as long as the tune depression and crossing speed is below the threshold value.

Acknowledgements

- Members of the beam physics Lab. @ Hiroshima Univ.
 - Staffs

Hiromi Okamoto, Hiroyuki Higaki, Kiyokazu Ito

- Students
 - K. Fukushima, K. Moriya

and many past students who contributed to the project.

Collaborators

 Andrew M. Sessler(LBNL), Steven M. Lund(LLNL), David P. Grote Jean-Luc Vay

Thank you for your attention!

Appendix

Penning-Malmberg trap

- Transverse confinement
 <u>Axial magnetic field</u>
- Longitudinal confinement
 - Static potential barrier

Smooth focusing lattice

Study of beam halo formation

M. Endo *et al.*, Proc. of the 9th Annual Meeting of Particle Accelerator Society of Japan, pp. 427 - 429 (2011) CYCLOTRONS'13@Vancouver 30

Choice of Lattice Function

The S-POD system can generates a wide variety of lattice functions.

- FODO lattice and sinusoidal focusing system have almost an identical resonance structure.
- We employ the sinusoidal focusing just for technical simplicity.

* K. Fukushima et al., Nucl. Instrum. Meth. A, to be published.

Resonance Crossing – Distribution Dependency – PIC Simulation

Tune depression: $\eta = 0.90$

420 rf periods sweeping

- Qualitatively same emittance evolution.
- KV beam results the smallest emittance growth.

Simulation Setup

- Transverse 2D simulation using PIC code WARP*
 - The 2D approximation is reasonable because... Longitudinal potential wall is square-like.

 Launch a plasma matched to the focusing force and see how does it evolve.

Simulation Parameters

Initial distribution: Gaussian, KV, Waterbag, Semi-Gaussian
Temperature: 0.1 ~ 0.3 eV
Tune depression η: 0.8 ~ 1.0
of simulation particles : 10⁵
of integration step : 200 per 1 rf period * http://hifweb.lbl.gov/webpages/VNLsimulations.html

CYCLOTRONS'13@Vancouver