Vlasov equation approach to space charge effects in isochronous cyclotrons

Antoine Cerfon

Courant Institute of Mathematical Sciences, NYU with J. Guadagni and O. Bühler (CIMS NYU) J.P. Freidberg and F.I. Parra (MIT PSFC)

MOTIVATION: SPIRALING IN ISOCHRONOUS MACHINES

PSI Injector II

PICN (Adam)

MOTIVATION: BREAKUP IN ISOCHRONOUS MACHINES

MOTIVATION

- Beam spiraling and beam breakup
 - Observed in PIC simulations
 - Indirect experimental observations
 - Single-particle explanation
- PIC simulations
 - ► Combine Newton's equations with Maxwell's equations
 - Strengths: Conceptually simple, reliable tool, moves the theoretical effort from physics to computer science
 - <u>Weaknesses</u>: Does not provide intuitive understanding, computationally costly
- Single particle picture: how to extend it for the nonlinear dynamics?
- Can we use continuum kinetic theory for an intuitive and analytic explanation of these effects?

OUTLINE

- ► Fluid theory of beam vortex motion
 - Fluid model for highly intense proton beams
 - ► Multiple time scale analysis and averaging procedure
- Beam stability
 - Comparison with PIC simulations
 - ► Isomorphism with Euler equations for a fluid
 - Beam stability theorems

OUTLINE

- ► Fluid theory of beam vortex motion
 - Fluid model for highly intense proton beams
 - Multiple scale analysis and averaging procedure
- Beam stability
 - Comparison with PIC simulations
 - ► Isomorphism with Euler equations for a fluid
 - Beam stability theorems

FLUID THEORY OF BEAM VORTEX MOTION

Our fluid theory is based on two principles:

- 1. The principle of **maximal** geometric simplification:
 - ► Homogeneous magnetic field: **B** = B**e**_z
 - Non-relativistic coasting beam
 - **Two-dimensional problem**: $\partial/\partial z \equiv 0$ for all quantities
- 2. The principle of minimal beam physics simplification

We will derive all the results from **kinetic theory** and the **Vlasov** equation, using only **one** assumption:

The amplitude of the mismatch oscillations is small compared to the size of the proton beam (i.e. departure from laminar flow is small)

HOW SMALL IS SMALL?

- Let *a* be the characteristic size of the beam; *n* the beam density;
 *v*_T the beam thermal velocity; ω_c the cyclotron frequency
- ► Relative size of space charge force and magnetic force

$$\left|\frac{\mathbf{E}}{\mathbf{v}\times\mathbf{B}}\right|\sim\frac{e^2an}{m\epsilon_0\upsilon_T\omega_c}\sim\frac{e^2n}{m\epsilon_0\omega_c^2}\equiv\frac{\omega_p^2}{\omega_c^2}$$

where ω_p is the plasma frequency

Define

$$\delta^2 = \frac{\omega_p^2}{\omega_c^2} = \frac{mn}{\epsilon_0 B^2}$$

- All cyclotrons and rings satisfy $\delta^2 \leq 1$, and **most satisfy** $\delta^2 \ll \mathbf{1}$
- We consider the regime in which the mismatch oscillation amplitude is of order δa

DERIVING FLUID EQUATIONS FOR THE BEAM

Evolution of the beam distribution function f(x, v, t) in phase space given by the Vlasov equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e}{m} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_{\mathbf{v}} f = 0$$

► Taking the integrals $\int d\mathbf{v}$ and $\int \mathbf{v} d\mathbf{v}$ of this equation, and defining $n \equiv \int f d\mathbf{v}$, $n\mathbf{V} = \int \mathbf{v} f d\mathbf{v}$, and $\mathbf{P} = m \int (\mathbf{v} - \mathbf{V})(\mathbf{v} - \mathbf{V}) f d\mathbf{v}$, we can obtain **fluid-like equations**:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{V}) = 0 \qquad \text{Continuity}$$
$$mn\left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V}\right) = en\left(\mathbf{E} + \mathbf{V} \times \mathbf{B}\right) - \nabla \cdot \mathbf{P} \qquad \text{Momentum}$$

- Well-known closure problem: too many unknowns and not enough equations
 - \Rightarrow In general, need **kinetic codes** to solve the Vlasov equation

PRESSURE TENSOR

- When $\delta^2 \ll 1$ and the mismatch oscillation amplitude is of order δa , we can derive **closed fluid equations**
- That's because to lowest order in δ the tensor **P** has the form

$$\mathbf{P} = p_{\perp} \mathbf{I} + (p_{\parallel} - p_{\perp}) \mathbf{e}_{z} \mathbf{e}_{z} = \begin{pmatrix} p_{\perp} & 0 & 0\\ 0 & p_{\perp} & 0\\ 0 & 0 & p_{\parallel} \end{pmatrix}$$

Proof: • Compare all the terms to the magnetic term in the Vlasov equation, with |**v**| ~ δv_T:

$$\frac{\mathbf{E}}{\mathbf{v} \times \mathbf{B}} \sim \frac{aen}{\delta a \omega_c \epsilon_0 B} \sim \frac{\omega_p^2}{\delta \omega_c^2} \sim \delta$$
$$\frac{\mathbf{v} \cdot \nabla f}{e/m \mathbf{v} \times \mathbf{B} \cdot \nabla_{\mathbf{v}} f} \sim \frac{\delta \omega_c}{\omega_c} \sim \delta \qquad \frac{\partial f/\partial t}{e/m \mathbf{v} \times \mathbf{B} \cdot \nabla_{\mathbf{v}} f} \sim \frac{v}{a \omega_c} \sim \delta$$

• To lowest order in δ , the Vlasov equation therefore is

 $\mathbf{v} \times \mathbf{B} \cdot \nabla_{\mathbf{v}} f = 0 \quad \Rightarrow \partial f / \partial \varphi = 0 \quad (\varphi : \text{gyrophase})$

FLUID EQUATIONS

$$\nabla \cdot \mathbf{P} = \nabla p_{\perp} + (p_{\parallel} - p_{\perp})\mathbf{e}_{z} \cdot \nabla \mathbf{e}_{z} + \mathbf{e}_{z} \cdot \nabla (p_{\parallel} - p_{\perp})\mathbf{e}_{z} + (p_{\parallel} - p_{\perp})\nabla \cdot \mathbf{e}_{z}\mathbf{e}_{z}$$
$$= \nabla p_{\perp} + \mathbf{e}_{z} \cdot \nabla (p_{\parallel} - p_{\perp})\mathbf{e}_{z}$$

- ▶ In the radial-longitudinal plane, only contribution is ∇p_{\perp}
- Fluid equations in the frame moving with the beam for the 2D motion in the radial-longitudinal plane:

$$\frac{dn}{dt} + n\nabla \cdot \mathbf{v} = 0 \qquad \frac{d\mathbf{v}}{dt} + \mathbf{v} \times \mathbf{e}_z = -\delta^2 \left(\nabla\phi + \frac{\alpha^2}{n}\nabla p_{\perp}\right)$$
$$\nabla^2\phi = -n \qquad \alpha^2 \equiv T_{max}/ma^2\omega_p^2$$

► <u>IMPORTANT</u>: The pressure term comes in as an exact gradient; as we prove later, this means that we do not need an equation for the evolution of p_⊥

MULTIPLE TIME SCALE ANALYSIS

- When $\delta^2 \ll 1$, the space charge time scale is **much longer** than the betatron time scale
- ► The particle motion is **quasi-periodic**
- This can be used to reduce the complexity of numerical simulations (e.g. PICS)
- We use it to derive simple fluid equations valid on the space charge time scale, using a multiple time scale analysis

Step 1: Each quantity Q is assumed to vary according to the different time scales as follows:

$$Q(\mathbf{r},t) = Q(\mathbf{r},t_0,t_2,t_4,\ldots) = Q(\mathbf{r},t,\delta^2 t,\delta^4 t,\ldots)$$

 t_0 is the betatron time scale; $t_2 \sim \delta^2 t_0$ is the space charge time scale

$$\frac{\partial Q}{\partial t} = \frac{\partial Q}{\partial t_0} + \delta^2 \frac{\partial Q}{\partial t_2} + \dots$$

► <u>Step 2</u>: Define averaging operation over the betatron time scale

$$\langle Q \rangle = \frac{1}{2\pi} \int_0^{2\pi} Q(\mathbf{r}, t_0, t_2, \ldots) dt_0$$

Separate *Q* into the sum of a rapidly oscillating part \tilde{Q} , and a slow monotonic evolution \bar{Q} :

$$Q({f r},t_0,t_2,\ldots)= ilde Q({f r},t_0,t_2,\ldots)+ar Q({f r},t_2,\ldots)$$
 where by definition $\langle ilde Q
angle=0$

• Step 3: Expand all quantities in δ . The expansion corresponding to our assumptions is

$$n = \bar{n_0} + \delta (\tilde{n_1} + \bar{n_1}) + \delta^2 (\tilde{n_2} + \bar{n_2}) + O(\delta^3)$$

$$p_{\perp} = \bar{p_0} + \delta (\tilde{p_1} + \bar{p_1}) + \delta^2 (\tilde{p_2} + \bar{p_2}) + O(\delta^3)$$

$$\phi = \bar{\phi_0} + \delta \left(\tilde{\phi_1} + \bar{\phi_1} \right) + \delta^2 \left(\tilde{\phi_2} + \bar{\phi_2} \right) + O(\delta^3)$$

$$\mathbf{v} = \delta \tilde{\mathbf{v}}_1 + \delta^2 (\tilde{\mathbf{v}}_2 + \bar{\mathbf{v}}_2) + O(\delta^3)$$

Step 4: Plug this expansion into the fluid equations and solve order by order in δ. For the density, we have

$$\begin{aligned} \frac{\partial \tilde{n}_1}{\partial t_0} + \nabla \cdot (\bar{n}_0 \tilde{\mathbf{v}}_1) &= 0 \ O(\delta) \\ \frac{\partial \tilde{n}_2}{\partial t_0} + \frac{\partial \bar{n}_0}{\partial t_2} + \nabla \cdot [(\tilde{n}_1 + \bar{n}_1) \tilde{\mathbf{v}}_1 + \bar{n}_0 (\tilde{\mathbf{v}}_2 + \bar{\mathbf{v}}_2)] &= 0 \ O(\delta^2) \\ \frac{\partial \bar{n}_0}{\partial t_2} + \nabla \cdot (\langle \tilde{n}_1 \tilde{\mathbf{v}}_1 \rangle + \bar{n}_0 \bar{\mathbf{v}}_2) &= 0 \end{aligned}$$

- *n*₁ and *v*₁ are given by the lowest order betatron motion: easy to compute ¹
- ► Taking the momentum equation to O(δ²) and averaging it on the fast time scale, we find:

$$\bar{\mathbf{v}}_2 = \langle \tilde{\mathbf{v}}_1 \cdot \nabla \tilde{\mathbf{v}}_1 \rangle \times \mathbf{e}_z + \nabla \bar{\phi}_0 \times \mathbf{e}_z + \frac{\alpha^2}{\bar{n}_0} \nabla \bar{p}_0 \times \mathbf{e}_z$$

• Combining all the results, we find after some algebra¹

$$\begin{aligned} &\frac{\partial \bar{n}_0}{\partial t_2} + \nabla \cdot \left(\bar{n}_0 \nabla \bar{\phi}_0 \times \mathbf{e}_z \right) + \alpha^2 \nabla \cdot \left[\nabla \times \left(\bar{p}_0 \mathbf{e}_z \right) \right] = 0 \\ \Leftrightarrow &\frac{\partial \bar{n}_0}{\partial t_2} + \nabla \bar{\phi}_0 \times \mathbf{e}_z \cdot \nabla \bar{n}_0 = 0 \end{aligned}$$

 In our ordering, temperature effects do not play any effect on the slow time scale (at least to lowest order)

¹A.J. Cerfon, J.P. Freidberg, F.I. Parra, and T.A. Antaya, PRSTAB **16**, 024202 (2013)

BEAM DYNAMICS DUE TO SPACE CHARGE EFFECTS

► Final result:

$$\begin{aligned} \frac{\partial \bar{n_0}}{\partial t_2} + \nabla \bar{\phi_0} \times \mathbf{e}_z \cdot \nabla \bar{n_0} &= 0\\ \nabla^2 \bar{\phi_0} &= -\bar{n_0} \end{aligned}$$

- Describes the advection of the density profile in the velocity field E × B/B²
- Agrees with single-particle picture, and extends it to the nonlinear regime
- Our result is a first-principle derivation of Gordon's² intuition
- δ^2 only appears through t_2 . Bunches with different densities have identical behavior. Only difference: growth rates and frequency scale linearly with *n*

²M.M. Gordon, in *Proceedings of the 5th International Cyclotron Conference*, Oxford 1969, pp. 305-317

EXB ADVECTION

OUTLINE

- ► Fluid theory of beam vortex motion
 - Fluid model for highly intense proton beams
 - ► Multiple scale analysis and averaging procedure
 - Isomorphism with Euler equations for a fluid
- Beam stability
 - Comparison with PIC simulations
 - Isomorphism with Euler equations for a fluid
 - Beam stability theorems

IS OUR MODEL RELEVANT?

Our simulation

PICS simulation

- Good agreement, even at $\delta^2 = 0.8$
- Geometrical effects play a very limited role

ISOMORPHISM WITH 2D EULER EQUATIONS Beam vortex dynamics 2D incompressible Euler

$$\frac{\partial n}{\partial t} + \nabla \phi \times \mathbf{e}_z \cdot \nabla n = 0$$
$$\nabla^2 \phi = -n$$

$$rac{\partial \omega}{\partial t} +
abla \psi imes \mathbf{e}_z \cdot
abla \omega = 0$$

 $abla^2 \psi = -\omega$

n: bunch density; ϕ : electrostatic potential

 $\omega {:}\ z{-}{\rm directed}$ vorticity; $\psi {:}\ {\rm stream}$ function for the flow

- Isomorphism recognized a long time ago in a slightly different context³
- We proved that the isomorphism holds even for finite temperature beams
- We can use decades old fluid dynamics results to determine/understand the stability of bunch distributions

³C.F. Driscoll and K.S. Fine, *Phys.Fluids B* **2** 1359 (1990)

STABILITY OF ROUND BEAMS

- ► Radial density distributions automatically satisfy the equations
- Well-known results from fluid theory of radially symmetric vortex patches:
 - ► If n(r) is monotonically decreasing, the bunch is nonlinearly stable to nonsymmetric density perturbations
 - Hollow density profiles can be unstable to these perturbations

Gaussian n(r), $\delta^2 = 0.8$

ELLIPTIC BUNCHES WITH UNIFORM DENSITY

- Classical case in fluid dynamics: uniform density profile Call *a* the semi-major axis and *b* the semi-minor axis
- ► If *a*/*b* < 3, bunch is linearly and nonlinearly **stable** to edge perturbations

If a/b > 3, bunch is linearly and nonlinearly **unstable** to edge perturbations

► Instability is a potential mechanism for **beam breakup**

Elliptic bunches with smooth density profile

- More complicated case. Answer depends on the smoothness of the profile
- ► For reasonably smooth profile, "axisymmetrization principle"⁴ even for *a*/*b* < 3</p>

⁴M.V. Melander, J.C. McWilliams and N.J. Zabusky, J. Fluid Mech. 178 (1987) 137

BEAM SPIRALING A.K.A AXISYMMETRIZATION

Our simulation

OPAL simulation

- In PSI Injector II, formation of a round stable core after 40 turns (good)
- In machines with lower δ², core and halo take longer to form Potentially bad situation if low density halo forms with high energy

SUMMARY

- Space-charge forces are small relative to magnetic forces by the ratio δ² = ω_p²/ω_c² ≤ 1
- The scale separation between betatron and space charge time scales can be advantageously used to reduce the complexity of kinetic calculations and reduce computational time
- When the mismatch amplitude is small by δ compared to the typical size of the beam, a fluid model of the beam can be rigourously derived from the Vlasov equation
- ► In the fluid model, beam spiraling is a consequence of the advection of the beam in the E × B velocity field
- Bunches behave like isolated vortex distributions in the 2D incompressible Euler equations
- This physical picture is in quantitative agreement with PIC simulations

ONGOING AND FUTURE WORK

- Include accelerating gaps. Design accelerating voltage shape/phase to counter spiraling?
- ► Allow arbitrary departure from laminar regime
 - ► Requires numerically solving a kinetic equation
 - Idea: use scale separation between betatron and space charge time scales to simplify Vlasov equation
 - Write a reduced continuum kinetic code
- Relativistic regime (Adelmann)
- ► Consider realistic magnetic field configurations and 3D effects
- Develop collaboration with experimentalists and PIC developers
 Suggestions you might have? Lets discuss them!