ADVANCED CYCLOTRON SYSTEMS Ontperforming the field

Mechanical and Measurement Specifications

- Magnetic field accuracy:
- Azimuthal, radial resolutions:
- Magnetic field range:
- Scanning speed:
- Duration of 360° measurement:
- Number of samples per scan:

5* 10⁻⁵ T (in hills) 0.0005°, 25 μm 0.4 – 2.2 T 75 – 500 mm/s 70 min (at 150mm/s) 52000

Main Mapper Components

Mechanical Motion Device Design

Shaft Assembly

HP Arm Assembly

Mechanical Motion Device

Data Acquisition and Control System

Data acquisition and control system diagram

Mapper's LabView program

Hall Probe Arm Alignment and Height Adjustment

Height Adjustment: the HP arm template inserted into the main shaft of the mapper

Arm Alignment: Use of the dial gauge

Arm Angle Reading

Inductosyn Alignment

The Interpolation of Magnetic Field to the Strip Edge

Home Angle Sensor

HP Noise Cancellation

less than 20 mGauss error

Calibration

- $\Delta B_z = 0.2$ G corresponds to $\Delta 0.22$ degree that corresponds to ± 1.3 mm tolerance in azimuthal direction
- $\Delta B_z = 0.5$ G corresponds to ± 2 mm tolerance in azimuthal direction

Comparison of two calibrations

Calibration of Group3 HP Temperature Sensor

Bz, Gauss

Error Check Using the Comparison of Different Scans

 Difference of two scans along the symmetry line of the hill that were taken from different maps.

 $\frac{dB_z}{dr} = 210 \ G/mm$

 Difference of 24 degree scans, (high azimuthal gradient field) that were taken from different maps

 $\frac{dB_z}{d\theta} = 1980 \ G/\text{degrees}$

Mechanical Azimuthal Oscillations as Error Source

HP Cable Errors Caused by Bending

SENIS HP cable loaded by 1.1 Ohm equivalent to HP resistor.

Max Voltage 14 mV corresponds to 45 Gauss

The Group3 cable loaded by 1.1 Ohm resistor moving along the TR-24 cyclotron magnet.

Max Voltage signal equivalent to 3.5 Gauss

Dynamic Errors Caused by the Low-pass Filter

Mapper Lift

THANK YOU