

Design Study of a Superconducting AVF Cyclotron for Proton Therapy

H. Tsutsui, A. Hashimoto, Y. Mikami, H. Mitsubori, T. Mitsumoto, Y. Touchi, T. Ueda, K. Uno, K. Watazawa, S.Yajima, J. Yoshida, K. Yumoto

Sumitomo Heavy Industries, Ltd., Japan

Cyclotrons 2013, Vancouver, Sep. 16, 2013

- 1. Introduction
- 2. Superconducting cyclotron design
- 3. Summary

Factories of Sumitomo in Japan

Niihama Factory

Accelerators for medical applications SHI

💠 Sumitomo Heavy Indı

230 MeV proton cyclotron (P235)

P235 cyclotron in National Cancer Center in Japan (1998~)

- Normal conducting (~2T)
- Weight ~200 t
- Diameter ~4.4 m

P235 cyclotrons manufactured and beam tested in Sumitomo Niihama Factory

Proton therapy systems by Sumitomo <u>SHI</u>

Aizawa Hospital

(Japan)

Samsung Medical Center (Korea)

Typical size of proton therapy facility SHI

A compact proton therapy system

P235 and SC cyclotrons

	Normal (P235)	Superconducting
Size	φ4.4 m×2.1 m	φ2.8 m×1.7 m
Yoke weight	200 t	55 t
Peak consumption	440 kW	200 kW (RF)
power		+ 40 kW (cryocooler)

- 1. Introduction
- Superconducting cyclotron design
 Superconducting cyclotron design
- 3. Summary

Some basic parameters

Beam	Particle species	proton
	Energy	230 MeV
	Current	> 300 nA
	Emittance	~3 π mm-mrad
	Momentum spread	±0.2 %
	Extraction efficiency	> 60 %
	Circulating frequency	48.15 MHz
Magnet	Yoke size	φ2.8 m × 1.7 m
	Yoke weight	55 t
	Beam extraction radius	0.6 m
	Average B at extraction radius	4 T
	Average B in center region	3.2 T
	Number of sectors	4

Two possible way to design a cyclotron <u>shi</u>

		HETERS MAGNET FELL METERS MAGNET FELL MAGNET FELL MAGN
	I. Yongen	H. Blosser
Hill gap	Narrow (~10 mm)	Wide (> 60 mm)
Advantages	Compact	Enough space to set
	Low magnetic field in	extraction components
	extraction beam line	in hill gap
Example	P235 / C235	MSU K500, K1200
	(SHI / IBA)	

Features of our design

- Narrow hill gap
- 2 dees (H=2) for acceleration
- Another cavity (H=4) for beam extraction
- 1 ESD + 2 MC's for extraction
- MC1 in a dee electrode
- 2-fold rotational symmetry of magnetic field distribution

Isochronous magnetic field calculation SHI

Isochronism and vertical beam stability have been obtained, by iteration of 3D magnetic field calculation and beam optics analysis

Tune diagram

No crossing of $v_r - v_z = 1$ resonance Extraction at $v_r = 1.1 \sim 1.2$

Center region

Beam tracking from ion source

RF frequency: 96 MHz (H=2)

RF cavity

Normalized dee voltage vs. radius

One RF cavity (H=4) may be added for obtaining high beam extraction efficiency

	cavity 1, 2	cavity 3
RF frequency	96.3 MHz (H=2)	192.6 MHz (H=4)
Dee voltage	50~100kV	180kV
Wall loss (80%Q)	40 kW/cavity	40 kW

Beam dynamics during acceleration **SHI**

No significant beam oscillation is excited by adding additional cavity

Beam extraction

- Extraction efficiency : 60 ~ 80 %
- Emittance: ~ 3 π mm-mrad
- ESD + 2 MC's to extract the beam

Magnetic channels (MC1, MC2)

Superconducting coil

Monolith NbTi/Cu Conductor Cu/NbTi ratio 2.4 Maximum B in coil 4.4 T 59 A/mm² Current density Cooling method Conduction cooling (liquid helium free) Cryocoolers Four 4K GM cryocoolers **Current** lead HTS Bi-2223 Ramping up time 30~60 minutes

Superconducting coil prototype

SC coil

SC coil / mechanical support

 A compact SC AVF cyclotron has been designed for proton therapy

- Its performance is enough for this purpose
- It can be manufactured in the existing technology

Thank you for your attention!