RADIAL-SECTOR CYCLOTRONS WITH DIFFERENT HILL AND VALLEY FIELD PROFILES

M.K. Craddock[#], University of British Columbia and TRIUMF*, Vancouver, B.C., Canada

Abstract

A new class of isochronous cyclotron is described in which more general radial field profiles B(r) are allowed than the simple proportionality to total energy found in conventional radial- and spiral-sector cyclotrons. Isochronism is maintained by using differently shaped field profiles in the hills and valleys. Suitably chosen profiles will produce high flutter factors and significant alternating-gradient focusing, enabling vertical focusing to be maintained up to 1 GeV or more using radial rather than spiral sectors.

INTRODUCTION

In an isochronous cyclotron, the constant orbit frequency, independent of ion energy $\gamma m_0 c^2$ and average radius *R* (circumference/ 2π), implies that

$$B = \gamma B_c, \qquad R = \beta R_c, \qquad (1)$$

where *B* denotes the average field around a closed orbit, B_c the "central field" and R_c the "cyclotron radius". Unfortunately the resultant positive field gradient produces a defocusing contribution to the vertical betatron tune v_z given by $\Delta v_z^2 = -\beta^2 \gamma^2$. From the beginning, a major problem in cyclotron design has been how to compensate this and ensure vertical focusing. Thomas's [1] suggestion of edge focusing through an azimuthal field variation with *N*-fold symmetry, and Kerst's [2] of adding alternating focusing by using spiral sectors, have together succeeded in enabling "compact" cyclotrons with spiral sectors to accelerate protons to 230 MeV ($\beta^2 \gamma^2 = 0.55$) [3]. *Separate-sector cyclotrons* (SSCs) can achieve higher flutter and so higher energies: the PSI Ring Cyclotron [4] produces 590 MeV protons ($\beta^2 \gamma^2 = 1.65$), and designs have been published for energies, up to 15 GeV [5].

Reverse-bend cyclotrons would achieve higher flutter still by making the valley fields negative ($B_v = -B_h$, as in radial-sector FFAGs), rather than zero. Moreover, the alternating-gradient (AG) focusing, minimal in the previous schemes, becomes significant. Thus, if the hills cover a fraction of the orbit h = 0.6, the flutter is expected to maintain vertical focusing only up to 3.75 GeV. But a tracking simulation [6] has shown that positive focusing is in fact preserved up to 7.3 GeV.

HILL AND VALLEY FIELD PROFILES

A common feature of the above schemes is that the hill and valley fields, while of different magnitudes, are assumed to have the same radial profiles, *i. e.*:

$$B_{\nu}(r)/B_{\mu}(r) = \text{constant.}$$
 (2)

ISBN 978-3-95450-128-1

More elaborate designs have also been proposed to achieve isochronism at high energy without using spiral magnets - basically by introducing more free parameters. Thus Rees [7] has designed a non-scaling muon FFAG that remains isochronous over the range 8-20 GeV (5,900 $<\beta^2\gamma^2<37,000!$), relying on AG focusing by "pumplet" cells (OdoFoDoFodO) composed of five straight-sided magnets of three different designs. On a less ambitious scale, Johnstone [8, 9] has designed close-to-isochronous non-scaling proton FFAGs to provide 250-MeV protons and 400-MeV carbon ions for cancer therapy, and 1-GeV protons for ADSR. These all use a 4-cell FDF triplet lattice with straight-sided (though not necessarily radial) edges, and are also remarkable for their low variation in tune, both v_r and v_r . In both these authors' studies the B(r)profile in each type of magnet is specially determined to produce the desired orbit properties.

Here we propose to explore a simpler possibility for achieving positive vertical focusing at high energy with purely radial sectors – allowing the radial field profiles in hills and valleys to differ. As was found helpful in previous high-energy cyclotron studies [6], we assume hard-edge fields with B_h and B_ν each constant along equilibrium orbits. In particular we assume a polynomial variation with energy:

$$B_{h}(\gamma) = H_{0} + H_{1}\gamma + H_{2}\gamma^{2} + H_{3}\gamma^{3} + \dots$$
(3)

$$B_{\nu}(\gamma) = V_0 + V_1 \gamma + V_2 \gamma^2 + V_3 \gamma^3 + \dots$$
(4)

As a first step we consider a "compact" design with no drift spaces and negative valley fields. For an orbit of mean radius *R* crossing a hill-valley edge at radius R_e , we may write $\ell_h = \rho_h \psi_h$ and $\ell_v = \rho_v \psi_v$ for the arc lengths within a half-cell (Fig. 1), where the radii of curvature $\rho_h = B_c R_c \beta \gamma B_h(\gamma)$, $\rho_v = B_c R_c \beta \gamma B_v(\gamma)$, and ψ_h and ψ_v are the bending angles.

Figure 1: Orbit geometry within a half-cell.

^{*}TRIUMF receives federal funding under a contribution agreement through the National Research Council of Canada. #craddock@triumf.ca

To maintain isochronism:

$$\ell_h H_1 + \ell_v V_1 = \frac{\pi}{N} B_c R_c \beta \quad \text{and} \quad \ell_h H_n + \ell_v V_n = 0 \ (n \neq 1).$$
 (5)

Thus if the hill coefficients H_n are specified, the valley coefficients V_n must satisfy:

$$V_1 = \frac{\pi}{N} \frac{B_c R_c}{\ell_v} \beta - \frac{\ell_h}{\ell_v} H_1 \quad \text{and} \quad V_n = -\frac{\ell_h}{\ell_v} H_n \ (n \neq 1). \tag{6}$$

Orbit Geometry

To compute B_{ν} therefore requires knowledge of the bending angles ψ_h and ψ_{ν} and of the radii of curvature – of which ρ_{ν} itself depends on B_{ν} . These parameters may be evaluated by invoking their various geometrical relationships, which after some manipulation yield a transcendental equation for ψ_h , from which the others follow:

$$\psi_h + (\psi_h - \pi/N) \frac{\sin \psi_h \sin[(1-h)\pi/N]}{\sin(\psi_h - \pi/N)\sin(h\pi/N)} = \frac{B_c \beta \gamma}{B_h(\gamma)}.$$
 (7)

This must be solved numerically, but a good starting point is to make the approximation $R_e = \beta R$, giving:

$$\psi_{h0} = \arcsin\left(\frac{B_h(\gamma)}{\gamma B_c}\sin\left(\frac{h\pi}{N}\right)\right). \tag{8}$$

Betatron Tunes

To calculate the betatron tunes we take a lumpedelement approach (validated by tracking with CYCLOPS in previous studies [6]), evaluating the traces of the vertical and horizontal transfer matrices for the full cell:

$$M = M_e M_v M_e M_h. (9)$$

Here M_e is the standard 2×2 matrix for a thin lens, while M_v and M_h are those for focusing and defocusing sector magnets respectively. For M_e we need to evaluate the focal power g of the edge crossing, which depends on the Thomas crossing angle $\kappa = \psi_h - h\pi/N$ and is given by:

$$g = \frac{B_h - B_v}{B_c R_c \beta \gamma} \tan\left(\psi_h - \frac{h\pi}{N}\right).$$
(10)

For M_v and M_h we need the field gradients and the phase advances $\phi_{h,v}$. For vertical motion $\phi_h = \ell_h \sqrt{K_h}$ and $\phi_v = \ell_v \sqrt{K_v}$, where the respective coefficients K_h and K_v are:

$$K_{h} = \frac{dB_{h}/dr}{B_{c}R_{c}\beta\gamma} = \frac{\gamma^{2}}{B_{c}R_{c}^{2}} (H_{1} + 2H_{2}\gamma + 3H_{3}\gamma^{2} + ...), \quad (11)$$

$$K_{\nu} = \frac{dB_{\nu}/dr}{B_{c}R_{c}\beta\gamma} = \frac{\gamma^{2}}{B_{c}R_{c}^{2}} \left(V_{1} + 2V_{2}\gamma + 3V_{3}\gamma^{2} + ...\right).$$
(12)

For the horizontal motion the phase advances are $\phi_h^* = \ell_h \sqrt{K_h^*}$ and $\phi_v^* = \ell_v \sqrt{K_v^*}$, where:

$$K_{h}^{*} = \frac{1}{\rho_{h}^{2}} + K_{h}$$
 and $K_{v}^{*} = \frac{1}{\rho_{v}^{2}} - K_{v}$. (13)
RESULTS

A number of cases were studied with $H_0 = 0 = H_{n>2}$ to investigate the dependence of the tunes on the size of the H_1 and H_2 components, the hill fraction h and the number of sectors N. Most runs were made for h = 0.5 and N = 8.

Figure 2 displays an example of such field profiles for one of the cases studied, showing that for $H_2 = 0.2H_1$ the B_h required is 20-40% higher than in an SSC.

No Sub Class

Figure 2: Field profiles for N = 8, h = 0.5, $H_1 = 2B_c$, $H_2 = 0.4B_c$.

For reference Fig. 3 displays the tunes for the conventional situation where $H_2 = 0$ so that both B_h and B_v are directly proportional to γ . Results are shown for values of H_1/B_c between 2.0 and 2.6, the lower value representing the situation in a separated-sector cyclotron with h = 0.5and near-zero field in the valleys. In that case the flutter $F^2 \approx 1$, and as expected the vertical tune v_z drops towards zero as $\beta^2 \gamma^2$ approaches 1 at around 400 MeV. Higher values of H_1/B_c require more negative valley fields, raising the flutter and the vertical tune values, until with $H_1/B_c = 2.6$ positive focusing is retained up to 1 GeV. The effect of increased H_1/B_c on the horizontal tune is less dramatic: for $H_1/B_c = 2$, $v_r \approx \gamma$, and for $H_1/B_c = 2.6 v_r$ still grows linearly but ~40% faster.

Figure 3: Variation of the vertical tune v_z with energy for $H_2 = 0$, h = 0.5, N = 8, and various values of H_1/B_c .

Figure 4 shows the effect of adding a γ^2 component to the field for $H_1/B_c = 2.0$, h = 0.5 and N = 8. For $H_2 = 0$ we have the same case as before, where the vertical tune drops to 0 near 400 MeV. But increasing the γ^2 component raises v_z significantly, making it almost constant for $H_2/B_c = 0.4$ and rise with energy for higher values. There is also a significant effect on the horizontal tune, introducing a noticeable quadratic dependence on energy, driving v_r to the N/2 resonance at 900 MeV for $H_2/B_c = 0.6$.

In Fig. 5 we return to the effect of varying H_1/B_c (as in Fig. 2) for h = 0.5 and N = 8, but now with $H_2/B_c = 0.4$. As before, raising H_1/B_c increases both tunes, but v_z more

Figure 4: Variation of the vertical tune v_{z} with energy for $H_1/B_c = 2, h = 0.5, N = 8$, and various values of H_2/B_c .

noticeably than v_r . For this value of the γ^2 component, the least variation in v_z is obtained for $H_1/B_c = 2.2$. In this case (and in those of varying h and N below) the effect on the horizontal tune is small.

Figure 5: Variation of the vertical tune v_z with energy for $H_2 = 0.4$, h = 0.5, N = 8, and various values of H_1/B_c .

The fraction of a sector occupied by the hill also has a powerful influence on the tunes. Figure 6 shows the tunes for hill fractions h between 0.5 and 0.65 for $H_1/B_c = 2$, $H_2/B_c = 0.4$ and N = 8. Just as for separated-sector cyclotrons, widening the hills increases the flutter and both V_7 and V_{r} .

Figure 6: Variation of the vertical tune v_{z} with energy for $H_1/B_c = 2$, $H_2/B_c = 0.4$, N = 8, and various values of h.

The effect of the number of sectors on the tunes is shown in Fig. 7, where data are plotted for N = 8, 10 and 12, with $H_1/B_c = 2$, $H_2/B_c = 0.4$ and h = 0.5. Increasing N lowers both v_r and v_r , but the effect is a weak one except at the highest energies. Neither tune approaches the N/2resonance in the energy range considered, but v_r would do so for N = 8 not much above 1 GeV, making higher periodicity necessary for higher-energy designs.

Figure 7: Variation of the vertical tune v_z with energy for $H_1/B_c = 2, H_2/B_c = 0.4, h = 0.5, \text{ and various values of } N.$

CONCLUSIONS

A study has begun of using different radial field profiles in hills and valleys (while maintaining isochronism) to obtain increased flutter and more strongly alternating gradients - and hence increased vertical focusing in radial-sector cyclotrons. As a first step, adding a γ^2 component to the hill fields in a "compact" design (i.e. no field-free regions) - and subtracting a compensating γ^2 component from the valley fields - has been shown to be a possible way of providing radial-sector cyclotrons with sufficient vertical focusing to reach at least 1 GeV.

The practicality of such a design has not been taken into account, particularly with regard to finding suitable locations for the accelerating cavities and injection and extraction systems. Field-free drift spaces would remove this difficulty and a beam optics study of such an arrangement is under way.

REFERENCES

- [1] L.H. Thomas, *Phys. Rev.* 54, 580-8 (1938).
- [2] D.W. Kerst, et al., Phys. Rev. 98, 1153 (A) (1955).
- [3] Y. Jongen et al., Proc. PAC'97, 3816 (IEEE, 1998).
- [4] H. Willax, Proc. Int. Conf. Sector-focused Cyclotrons & Meson Factories, CERN 63-19, 386-97 (1963).
- [5] J.I.M. Botman, M.K. Craddock, et al., Proc. PAC'83, IEEE Trans. NS-30, 2007-9 (1983).
- [6] M.K.Craddock, Y.-N.Rao, PAC'09, 5044 (2009).
- [7] G. Rees, *ICFA Beam Dynamics Newsltr.* **43**, 74 (2007).
- [8] C. Johnstone, *FFAG'09* (2009).
- [9] C. Johnstone, P. Snopok, F. Méot, W. Weng, Proc. IPAC'12, 4118 (2012).

2013 CC-BY-3.0 and by the respective authors ISBN 978-3-95450-128-1