

C Y C L O T R O N 2010 Lanzhou, China September 2010

CYCLONE® 70
ARRONAX Cyclotron
Progress Report

Luis Medeiros Romao
Project Manager
On behalf of the IBA team...

We protect, enhance and save lives

The Goals

Accelerated Beam	Extracted Energy (MeV)	On target Beam Intensity (eµA)	Extraction mode
H ⁻	30 – 70	750	Stripper (dual)
D-	15 – 35	50	Stripper (dual)
⁴ He ²⁺	70	70	Deflector (single)
HH+	35	50	Deflector (single)

The Goals

The Time Line

Birthday...30/04/2006

Status Report

- Overtaken Hurdles:
 - ✓ Compensation coils
 - √ Harmonic 1
 - ✓ Electrostatic deflector
- Final challenges to success:
 - Vacuum improvement
 - High intensity 70MeV proton beam
- Substantial steps to full operation:
 - 90% of acceptance tests passed with success
 - Several months of beam tests successfully carried out for ARRONAX

Compensation Coils

- Issue:
 - Important electromagnetic forces during current ramp-up
- Consequences:
 - Displacement of the conductors:
 - Wear out of the kapton isolation
 - ➤ short-circuits → iron
- Solution:
 - Epoxy isolated coils

Compensation Coils

Harmonic 1

- Issue:
 - □ H1 magnetic component ~ 10G (B ~ 1,6T)

- Consequences:
 - Beam decentering
 - $lue{}$ Dangerous crossing of u_z = 0.5 & u_r = 2 u_z
 - □ Negative impact on the He²⁺, D⁻ and HH⁺ beam optics

- Solution:
 - □ Harmonic coils → center & outer radii

Harmonic 1 – Center Coils

- □ Center radii → 300At
- Magnetic gap decreased from 30mm → 16mm

Harmonic 1 – Outer Coils

- □ Outer radii → 90At
- Magnetic gap decreased from 30mm → 20mm

Harmonic 1 – Outer Coils

Electrostatic deflector

Issues:

- Septum's power dissipation capacities
- Pre-septum's position

Consequences:

Limited beam intensity extraction (25eµA – 70MeV)

Electrostatic deflector

- Solutions:
 - Redesigned septum & pre-septum:
 - W insert:
 - Increase power dissipation
 - Optimized profile:
 - □ Recalculated thickness variation → increase power dissipation
 - Gap variation: 4 8mm
 - \Box Vext = 65 70kV
 - ➤ Optimized pre-septum thickness → 0.6mm
 - ❖ Reduced septum to pre-septum distance: 10mm → 1mm
 - Improved septum protection

Electrostatic deflector – W insert

Electrostatic deflector – Pre-septum

- ☐ Issue:
 - Thermal contact of the pre-septum blades
- Proposed solution:
 - Braze the W blades (same technique used for the septum)

High Intensity 70MeV Proton Beam

Issues:

- Fast o-ring deterioration:
 - Stripper probes
 - Stripper air locks
 - Extraction vacuum chamber
- Outgassing:
 - Stripper probes
 - Vacuum chamber
- Vacuum level in the non pumped valleys (RF cavity valleys)

Consequences:

- Rapid deterioration of the base vacuum impacting the transmission yield and limiting accelerators H- performances
- H- limited performances (~ 450eµA) due to outgassing induced by neutral beam essentially heating up the vacuum chamber

High Intensity 70MeV Proton Beam

Specific studies:

- Vacuum chamber neutral beam distribution and temperature analysis
- Residual Gas Analysis
- Detailed model of the vacuum system
 - See poster presented by Vincent Nuttens
- Long term activation

Solutions:

- ✓ New stripper probes → double cooling circuit
- Local o-ring shielding
- ✓ External Cooling → vacuum chamber
- Internal vacuum chamber cooling
- Pumping speed improvement

Vacuum Chamber Neutral Beam Distribution

Vacuum Chamber Temperature Analysis

Residual Gas Analysis

- Difficult set-up:
 - Magnetic field
 - Distance from the cyclotron → sensibility of the measurement
 - Neutron flux
- □ Limited operation level → 125µA / 70MeV
- □ Conclusions → proper vacuum up to 125µA
 - Major detected compound: water

Local o-ring shielding

External cooling – vacuum chamber

Internal cooling – vacuum chamber

- Decrease outgassing:
 - Resulted from the external cooling experience that was not sufficient
- □ 20mm Al water cooled neutral "beam stop" → acceleration plane

Internal cooling – vacuum chamber

Pumping improvement upgrade

Solution:

- 2 additional cryo pumps → extraction chambers
 - Pumping speed: 6300l/s H₂O

Objective:

- 90% transmission yield at 750µA / 70MeV
- Full proton beam performance

Pumping improvement upgrade

- Main assumptions:
 - **ARRONAX** operational plan (very ambitious):

Proton Beam 70 MeV			
Year	Intensity (µA)	Time (h)	
2010	40	300	
2011	100	2000	
2012	250	2200	
2013	400	2300	
2014	600	2500	
2015	750	2700	

- Transmission yield at high current:
 - > 90% (vacuum calculations with cryo pump upgrade)
- Neutral beam distribution on vacuum chamber
 - measured on site

Conclusions:

- Calculations based on PHITS and measured cross sections:
 - Principle radioisotopes contributing (for E > 30MeV on Al):
 - 22 Na: $T_{1/2} = 2.6$ yrs
 - 24 Na: $T_{1/2} = 14.96$ hrs
- Cumulated activities after 6 years:
 - ²²Na: 7.35 10¹⁰ Bq
 - > ²⁴Na: 2.98 10¹⁰ Bq

Dose rates:

Solution:

- Add an aluminum 20mm thick belt that can be replaced at a given frequency:
 - Neutral beam beam stop
 - Reduce to acceptable levels the dose rates
 - Maintenance!
- ❖ Internal cooling circuit → perfect match!
- In progress:
 - Determine the frequency of replacement

Achievements – Acceptance Tests

Injection yields:

- ✓ H⁻: > 35% (with buncher)
- \checkmark He²⁺ / HH⁺ / D⁻ : > 10% (with buncher)

□ Transmission yields:

- + H-: 85% (at 450μA)
- ✓ D-: 75% (taking into account magnetic gap variation)
- ✓ He²+: 85% (taking into account magnetic gap variation)
- ✓ HH+: 85% (taking into account magnetic gap variation)

Extraction yields:

- ✓ He²+: 83%
- ✓ HH+: 80%
- \checkmark H⁻ / D⁻ : > 99%

Achievements – Acceptance Tests

- Simultaneous beam extraction:
 - √ H- 70 MeV: > 200µA
 - √ H⁻ 30 MeV: > 200µA
- Beam transport on all beam lines and all particles:
 - ✓ Transport yields: > 96%
 - ✓ Target yields: 92%
- ✓ Validated solid target system
- ✓ Validated control system
- ✓ Validated interlock system

Achievements – Present Performances

- □ H⁻:
 - 1mA at 150mm (1MeV)
 - ❖ High current BTL validated at 375µA 70MeV
 - ❖ 2 x 200µA 70MeV
- □ D-:
 - √ 50µA 35MeV
- ☐ He²⁺:
 - √ 70µAe 70MeV
- □ HH+:
 - √ 50µAe 35MeV
- Base vacuum: 4 10⁻⁷mbar (without cryo pump upgrade)

Major Final Steps...

- □ H-:
 - ❖ 2 x 375µA 70MeV
 - 55kW proton beam
 - Goal: 24 hour test
- Alpha pulsing

Alpha Pulsing

Alpha Pulsing

Thank-you...

Team...

Control Engineer: R&D Management: Yves Jongen Marc Pinchart Michel Abs **Technical team: Albert Blondin Jean-Baptiste Oliva System Owner: Dominique Bourgeois** Jean-Luc Delvaux **Serge Monfort** Physicists: Logistics: Will Kleeven **Chantal Van Uytven** Simon Zaremba QA: Dirk Vandenplaasche **Delphine Rosoux** William Beeckman QC: **Yves Paradis Pascal Pelerin Supply Chain: Designers:** Jean-Claude Amélia **Louis-Guy Servotte Matthieu Lemercier Pascal Robert** Sébastien de Neuter **Partners: Gérard Lannoye Sébastien Deprez** Sigmaphi **Christian Van Hove Pantechnik Field Engineers:** Cegelec **Thierry Vanderlinden François Peeters**

