TRIUMF

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Latest Performance Of The 500 Mev H⁻ Cyclotron And Recent Progress Towards Three Simultaneous RIB's At TRIUMF

I. Bylinski on behalf of TRIUMF team

TRIUMF, Vancouver, Canada

Outline

- Introduction
- Cyclotron operation statistic
- Cyclotron upgrade highlights
- Cyclotron beam development
- Recent achievements in ISAC
- ARIEL project highlights
- Summary

Cyclotron operation statistics

Cyclotron operation statistics (continued)

Cyclotron operation statistics (continued)

September 7, 2010

Cyclotron operation statistics (continued)

Cyclotron Capability

Last decade routine operation: 220-250 μ A extracted

Immediate needs:

MuSR program & 500 MeV isotopes:

• BL1A (130 µ A)

ISAC program:

• BL2A (75 µ A)

Sr production:

- BL2C (75 µ A)
- Total (280 µ A)

5YP goal: 300 µ A

Long term plan: 400 μ A BL4=>100 μ A

Cyclotron Intensity Upgrade (400 μ A) Path

- Dee voltage raise (90=>96 kV) to improve machine acceptance (95 kV now)
- Injection line fine tuning to improve matching into the cyclotron (new emittance scanner employed in 2010)
- Implement high brightness ion source (2012)
- Injection line upgrade to accommodate intense beams
- Centre region high power beam probes development
- Additional 200 µ A beam dump construction to support machine development (2013)
- New BL4 extraction probe fabrication (2013)

September 7, 2010

Cyclotron Intensity Upgrade (400 μ A) Constraints

- Two primary beams for ISAC have to be stable
- Maintenance requires regular access to the machine
 - Present activation levels are tolerable, but cannot be much exceeded
- Sources of the activation beam losses in the cyclotron:
 - Residual gas stripping (~2% @ 5*10⁻⁸ Torr)
 - Transmission losses in the vertical plane (~1%)
 - Lorenz stripping losses (~5% at 500 MeV)
- Extraction energy reduction from 500 to 480 MeV implemented in 2010 allowed 30% reduction of prompt radiation and residual activation (confirmed with H⁰ online measurements and residual radiation monitors)
 - Energy reduction produced negligible impact on experiments and isotope production

September 7, 2010

Cyclotron refurbishing highlights

- New helium refrigerator for vacuum cryopumping:
 - Successfully employed in 2008
 - Improved vacuum (2*10⁻⁸ Torr), low maintenance
- Vault re-cabling:
 - ~1300 cables to replace
 - 5 year project (dose driven)
 - Status: new cable tray infrastructure & 130 cables are done
- New vertical section of the injection line:
 - Ready for installation in winter 2011 shutdown
- Trim & Harmonic coils power supplies replacement:
 - 120 units of 10-20 kW
 - 5 year project, just started

Vault Re-cabling

- Nature of the problem:
- Cables got damaged due to
- Radiation
- Elevated temperature
- Moisture

Injection line vertical section: Old Beamline Issues

- Electrostatic quads insulators got coated after
 >20 years in operation
- Radiation environment (cables, plastic hoses)

- Congested space: limited access
- Limited diagnostics: poor beam matching

Injection line vertical section: Goals and Scope

Goals:

- New robust optics compatible with future intensity increase by factor ~10
- Improved vacuum
- Enhanced diagnostics
- Improved serviceability

Scope:

- 12 m electrostatic beamline
- 45 optics elements (quads,

steerers, etc.)

• 19 diagnostics devices (5 types)

Beam Development Program See Y. Rao's talk (TUMCCO03) today

Highlights:

- Machine intensity increase
- Beam stabilization in the cyclotron and on the ISAC target
- Study of extraction of 2 stable beams for ISAC
- Beam size and position control on all production targets
- Beam extraction at lower energy (480 MeV instead of 500 MeV)
- Extraction foil ⁷Be contamination issue resolution
- Intensity stabilization for all users
 - Partial extraction
 - Split ratio regulation with harmonic coils
- Centre region beam dynamics study

September 7, 2010

New Ex1 / Ex2A Foil

- Highly oriented pyrolitic graphite foil
- Tantalum holder with a large radius corner
- Thin copper cushion
- Remained intact after 250 mAh

Tests with copper frame and diamond foil failed

Extraction Foils Properties

Foil type	Dimensions	Typical/max intensities	Lifetime
Pyrolitic Graphite Foil	4-5 mg/cm ² 16 x 32 mm	120/150 µA	65 mAh
Highly Oriented Pyrolitic Graphite Foil (+ new frame)	1.5-3 mg/cm ² 16 x 32 mm	120/150 µA	250 mAh, low statistics
Highly Oriented Pyrolitic Graphite Strip	3-5 mg/cm ² Width: 0.25 -0.4 mm Height: 32 mm	50 µA	Being tested
Graphite Brush	6.4 mm wide curtain made of 0.025 mm Ø wires	70/80 µA 65 mAh	
Graphite Filament	0.025 mm in diameter	< 1 nA	Never reached

Recent achievements in ISAC

- ISAC-II Phase-II superconducting linac
 - (B. Laxdal's talk on Thursday: THM1CIO02)
- Target development
- Ion sources

(P. Bricault's talk on

Thursday: THM1CIO04)

Charge state booster

ISAC-II Phase II SC-Linac Upgrade

- Five year R&D project completed on time and on budget
- Features three cryomodules with 20 niobium cavities
- First beam delivered to experiment April 2010

September 7, 2010

I. Bylinskii

Cyclotrons-2010

Actinide Target Tests

Sep 2008: Investigation of potential migration of activity through the actinide target and RIB beamline; review of upgraded ISAC radiation monitoring system and other infrastructure

Dec 2009: UO₂ target with FEBIAD ion source; investigation of noble gases Ar, Kr, Xe, Rn; RIB delivered to 8π spectrometer

Based on the experience of the previous runs improved target material compounds (UCx) are currently being developed. The next actinide target run at ISAC is scheduled in **Dec 2010**

Target		Target	p+	max. Beam	lon	
		Thickness	Irradiation	Current	Source	Investigated Elements
	Sep					
UO2 #1	2008	22.1 g/cm3	296 µAh	2 µA	Surface	Na, K, Ga, Rb, In, Cs, Fr
	Dec					
UO2 #2	2009	20.9 g/cm3	426 µAh	2 μA	FEBIAD	Ar, Kr, Xe, Rn, Fr

September 7, 2010

Conditioning Station and North Hot Cell

Note: 50 KW beam on ISOL target Motivation

- To prepare and test target/ion source assembly before on-line operation
 - Test cooling lines
 - Condition at HV
 - Prepare for on-line operation
- To prevent target module/hot cell cross contamination during actinide target handling, a new hot cell is being developed

Status

- Conditioning station ready in 2011
- North hot cell ready in 2012

September 7, 2010

I. Bylinskii

Cyclotrons-2010

Charge State Booster

- ChargeState Breeder is based on PHEONIX ECR
- Installation and commissioning are completed
- Tests completed, demonstrated RIB acceleration
- Efficiency is 2-5%
 - Improvement of the vacuum will help
- First delivery to experiment happened in summer
- Program for purifying beam from contaminants during acceleration is in progress
- Continue development with RIB
 - Eff vs T1/2
 - Eff vs chemical properties
 - Test injection of molecular ions for better RIB purification
- Plan for future: develop EBIS or EBIT

Accelerated RIB at ISAC – Evolution

FIVE YEAR PLAN (2010-2015)

- TRIUMF is set to further expand its strength: RIBs, nuclear medicine, isotope production, material science, technology transfer
- Accelerators Main Goal: More RIB's for users!
- Issues at ISAC:
 - Big overhead for target and beam switchover (~3000 hours RIB delivered over 4500 driver availability)
 - 12 experimental stations and 1 available RIB at the time
 - Development of new RIB shares time with running experiments
- Solution: Three simultaneous RIB's: one for each experimental area
- Realization: ARIEL project

ARIEL Project

- 10-year project
- Started in 2010
- Key components:
 - Electron linac driver
 - New proton beam line
 - Two new target stations (actinide)
 - New mass separators & frontend
 - New ISAC postaccelerator
- Electron accelerator and beamlines are funded by CFI
- Buildings and infrastructure are funded by local government

Photofission

September 7, 2010

I. Bylinskii

e-LINAC

- Electron driver for photofission: independent and complementary
- Elliptical SC cavities at 1.3 GHz
- Operation mode CW
- Limited gradient at 10 MV/m
- Final energy 50 MeV
- Intensity 10 mA
- ¹/₂ MW beam power
- 100 kV gun is being tested

September 7, 2010

I. Bylinskii Cyclotrons-2010

Collaboration with VECC (Kolcata, India)

- Same goal: electron linac for RIB
- Scope: build and test with beam two Injector Cryo-Modules (ICM) at 10MeV/50kW
- Share resources
- Supported early start of e-linac design

New Proton Beam Line (BL4N)

- Required beam: 10-100 μA
- Energy: 450-500 MeV
- Transport capacity: 200 μA
- Beam dump capacity: 200 μA
- Intensity instabilities: <1%
- Achromatic design & collimation: low loss
- 500 Hz beam rastering on the target

Future RIB delivery

September 7, 2010

I. Bylinskii

RIB Production Potential

Target A – ISAC-I target

Target B – The e-linac – 2013, the new proton line – 2016: double RIB hours

Target C – high power electrons: triple RIB hours by 2018

Summary

- 500 MeV cyclotron remains the TRIUMF's workhorse and is capable of satisfying the increasing operational requirements in the future
- TRIUMF cyclotron intensity needs to be increased by > 30%
- One more high intensity stable beam have to be extracted
- Extraction energy reduction helped equipment activation issue
- TRIUMF provides one of the most intense ISOL facilities in the world and is expanding into actinide targets domain
- TRIUMF has proven its SRF expertise with operational SC heavy ion linac and is moving into L-band domain
- New electron linac driver for RIB's is funded and being developed