

A Multi Mega Watt Cyclotron Complex

to Search for CP violation in neutrino sector

Luciano Calabretta, Mario Maggiore, Leandro Piazza, Danilo Rifuggiato Laboratorio Nazionale del Sud - Istituto Nazionale di Fisica Nucleare Alessandra Calanna, CSFN&SM, Catania

Expression of Interest for A Novel Search for CP Violation in the Neutrino Sector:

J. Alonso, F.T. Avignone, W.A. Barletta, R. Barlow,
H.T. Baumgartner, A. Bernstein, E. Blucher, L. Bugel, L. Camilleri,
R. Carr, J.M. Conrad, Z. Djurcuc, A. de Gouvêa, P.H. Fisher,
C.M. Ignarra, B.J.P. Jones, C. Jones, G. Karagiorgi, T. Katori,
S.E. Kopp, R.C. Lanza, W.A. Loinaz, P. McIntyre, G.B. Mills,
V. Papavassiliou, M. Sanchez, K. Scholberg, W.G. Seligman,
M.H. Shaevitz, S. Shalgar, T. Smidt, J. Spitz,
H.-K. Tanaka, K. Terao, C. Tschalaer, M. Vagins,
R. Van de Water, M.O. Wascko, R. Wendell, L. Winslow

DAEdALUS, a Decay-At-rest Experiment for δ_{CP} studies At the Laboratory for Underground Science, provides a new approach to search for CP violation in the neutrino sector. The design utilizes high-power proton accelerators to provide neutrino beams with energy up to 52 MeV from pion and muon decay-at-rest. The experiment searches $v_{\mu} \rightarrow v_{e}$ for at short baselines. The v_{e} will be detected in the 300 kton volume Gd-doped water **Cerenkov neutrino detector proposed for the Deep Underground Science and Engineering Laboratory**

(DUSEL).

3

Lay-out of the DAEALUS Experiment. Three neutrino source locations are used in conjunction with the 300 kton water Cerenkov detector complex at the 1.5 km level of DUSEL.

DAEALUS needs 1 ÷ 1.5 MW proton beam @ 800 MeV

The beam time structure being 100 msec beam on, 400 msec beam off duty cycle= 20% → peak power 5÷8 MW → Peak current 6÷10 mA

 Superconducting linacs provide the most conservative technology option but they are expensive

- <u>Space and cost constraints suggest that high-power cyclotrons could be</u> <u>a less expensive option.</u>

We propose a Multi-Megawatt Cyclotron Ring (MMC), to accelerates H₂⁺ for two main reasons:

-Vantages of stripper extraction vs. the Electrostatic Deflectors extraction

-Space charge effects reduced by a factor $\sqrt{2}$ vs. proton beam

Lanzhou, China, September 6 -10, 2010

5

Why the Stripper Extraction?

The cyclotron has to operate with high current beam 6÷10 mA, regime of high beam loading. It has to accelerate a short beam bunch to minimize the radial beam size which depend on the energy spread

This could be a problem for extraction by Electrostatic Deflectors, while it is not relevant for extraction by stripper

The Stripper Extraction allow to deliver two or more beams at the same time Two beam dumps are better than a one dump to dissipate the 1.5 MW power

Lanzhou, China, September 6 -10, 2010

7

To deliver a proton beam with 10 mA peak current we have to accelerate an H₂⁺ beam with a 5 mA peak current

The Generalized Perveance is the parameter which measure the space charge effect, it is defined by this formula [M. Reiser]:

$$K = \frac{qI}{2\pi \cdot \varepsilon_o \cdot m \cdot v^3}$$

1 N K W		$E_{p}=30 \text{ keV},$ $E_{H2}=30 \text{ keV}$ $\beta_{p}=1.414\beta_{H2}$		$E_{p}=30 \text{ keV},$ $E_{H2}=70 \text{ keV}$ $\beta_{p}=0.926\beta_{H2}$		$E_{p}=30 \text{ keV},$ $E_{H2}=70 \text{ keV}$ $\beta_{p}=0.926\beta_{H2}$
	Proton	K _p	Proton	K _p	Proton	K _p
	10 mA	1.245 ¹⁰⁻³	2 mA	0.249 10 ⁻³	2 mA	0.249 10 ⁻³
	H2+	K _{H2}	H2+	K _{H2}	H2+	K _{H2}
	5 mA	0.881 10 ⁻³	5 mA	0.247 10 ⁻³	3.5 mA	0.148 10 ⁻³
		$K_{H2}/K_{p}=0.707$		K_{H2}/K_p=0.992		K _{H2} /K _p =0.595

Cyclone-30 is able to delivers up to 2 mA

- □ 15 mA high-brightness H⁻ source
- □ Reduce H[−] stripping losses
 - Differential pumping
 - Compact design
 - Axial bore elements in separate housing at atmospheric pressure (no outgassing)
- Two pairs of steering magnets for beam alignment at inflector
- Cyclotron iron is used as return yoke for the solenoid
- Magnetic shielding of turbopumps

IBA Cyclone 30 Imax=2 mA						
Einj	30 keV	Emax	30 MeV			
Rinj	30 mm	Rext	0.75 m			
 at Rinj	1.0 T	 at Rext	1.3 T			
Sectors N.	4	N. Accel. Cavities	2			
RF	66 MHz	Harmonic	4 th			
ΔE/Turn	170 kV	Ion Source current H ⁻	15 mA			
EBCO TR-30 Imax=1.6 mA						
Einj	25 keV	Emax	30 MeV			
Rinj	25 mm	Rext	0.66 m			
 at Rinj	1.2 T	 at Rext	1.24 T			
Sectors N.	4	N. Accel. Cavities	2			
RF	73 MHz	Harmonic	4 th			
∆E/Turn	200 kV	Emittance (normalized)	0.43 π mm.mrad			

Main parameters are extrapolated from commercial compact cyclotron: C30, TR-30 Commercial cyclotron are able to deliver 1.5 ÷ 2 mA proton beam using injection energy and acceleration voltage moderate and multicusp ion source

H2+ Injector Einj=70 keV vs. 25-30 keV

Central field 1.3 vs. 1.0-1.2T → smaller beam size

DE/turn>420 keV vs. 170-200 keV DE/turn>1500 keV vs. 170-200 keV →phase compression

> New Generation ECR ion source with emittance $0.1 \div 0.2$ vs. 0.4

			Contraction of the Contraction o				
MMC-I Injector Cyclotron Parameters							
Eiı	nj	35 keV/n	Emax	50 MeV/n			
Ri	nj	41.6 mm	Rext	1.44 m			
 at	t Rinj	1.29 T	 at Rext	1.39 T			
Secto	rs N.	4	Cavities N.	4			
R	F	30 MHz	Harmonic	3 rd			
V-i	nj	> 70 kV	V-ext	250 kV			
ΔE/t	urn	1.8 MeV	$\Delta \mathbf{R}$ at Rext	11.6 mm			
∆x at Rext		< 3.5 mm	Turns N.	< 83			
1 Elect	1 Electrostatic Deflector (ED) + 2 Magnetic Channels						
E. D.	Gap	12 mm	E.D. field	40 kV/cm			
	Distance Accelerated Orbit to Extracted Orbit						
6 - 5 -							
4 -							
5 3 -							
2 -							
і - 0 -			1				
())	50	100 150	200			

degree

Main parameters are extrapolated from existing commercial compact cyclotron: C30 and TR-30

Injection energy and acceleration voltage are higher vs. C30/TR-30

30 MeV/n after 60 turn vs. 150, or 6 μsec vs. 8.1 μsec

Increasing acceleration voltage →shrink the bunch

> Beam Power at target 1 ÷ 1.5 MW Duty cycle 20% Beam on 100 msec Beam off 400 msec

 $<I>=1.4 \div 2 \text{ mA} \rightarrow$ $I_{\text{pulse}}=6.8 \div 10 \text{ mA}$

-10, 2010

MMC-I Injector Cyclotron Parameters								
Einj	35 keV/n Emax		50 MeV/n					
Rinj	41.6 mm	Rext	1.44 m					
 at Rinj	1.29 T	 at Rext	1.39 T					
Sectors N.	4	Cavities N.	4					
RF	30 MHz	Harmonic	3rd					
V-inj	> 70 kV	V-ext	250 kV					
ΔE/turn	1.8 MeV	$\Delta \mathbf{R}$ at Rext	11.6 mm					
$\Delta x \text{ at Rext}$ < 3.5 mm Turns N. < 83								
1 Electrostat	ic Deflector (H	ED) + 3 Magne	tic Channels					
E. D. Gap	12 mm	E.D. field	40 kV/cm					
Distanc	ce Accelerated (Drbit to Extracted	Orbit					
6								
4								
<u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u>								
2								
0	50	100 150	200					
	degree -10							

Beam losses @ injection

- 1° post 3 kW @ 100 keV
- 2° post 3 kW @ 200 keV
- 3° post 2.6 kW @ 350 keV

Extraction efficiency > 99.8% Beam power max. = 200 kW Power lost <400 W

 H_2^+ peak current 3.5 ÷ 5 mA

Current requested to the H_2^+ ion source: 24 ÷ 34 mA acceptance efficiency 15%, or ± 27° without buncher

Serious problem at the injection due to the space charge effect!

10, 2010

Versatile Ion Source (VIS) Developed at LNS-Catania by Gammino, Ciavola, Celona et Al.

Catania Versatile Ion Source is a "cheaper" solution

VIS could deliver the required 35 mA of H_2^+ at 70 keV and with a good normalized emittance $\varepsilon < 0.2 \pi$ mm.mrad, after minor adjustment

- The IFMIF project is developing an injector prototype, SILHI like
- A scaled down version of this source could be an alternative solution, but it is more complex and expensive
 - The IFMIF ion source will be tested by delivering an H₂⁺ beam! IFMIF preinjector main parameters:
- Maximum Energy 100 keV;
- Maximum current for D+ 100-140 mA;
- Normalized rms. emittance <0.30 π mm.mrad
- Beam current noise < 2% at frequencies below 1 MHz
- Beam turn-off time < 20 msec from 100% to 10% beam intensity

	and the second			
MMC-R Su	perconducting	Ring Cyclotron	Parameters	
Einj	50 MeV/n	Emax	800 MeV/n	
<rinj></rinj>	1.44 m	Rext	4.05 m	
 at Rinj	1.39 T	 at Rext	2.28 T	
Pole Gap	≥ 50 mm	Bmax	< 6 T	
Hill width	20 °	Sector height	< 5 m	
Outer radius	≤ 6 m	Sector weight	< 300 Tons	
Flutter	1.7 ÷ 1.27	Spiral angle	< 40°	
Sectors N.	8	Cavities N.	8	
Cavities type	λ/2	Cavities type	Double gap	
RF	59 MHz	Harmonic	6 th	$\frac{dR}{dR} = R \frac{E_g}{\gamma} \frac{\gamma}{1}$
V-peak	300 kV	∆E/turn	2.5÷3.2 MeV	$dN = E \gamma + 1 v_r^2$
∆R at Rinj	> 15 mm	$\Delta \mathbf{R}$ at Rext	1.5 mm	
∆x at Rinj	3 mm	∆x at Rext	1.5 mm	
$\varepsilon_x = 0.4 \pi \text{ mm.m}$	nrad, emittance r	normalized	$\Delta x = 1$	$\sqrt{\frac{4R}{\beta\gamma\nu_r}} \cdot \frac{\varepsilon_x}{\pi} + \left(\frac{dR}{dN}\frac{\Delta E}{E_g}\right)$
	the second se	THE REAL PROPERTY AND ADDRESS OF ADDRES	and the second se	

The Main problem to solve is to achieve a good vertical focusing

We verified that a v_z values in the range 0.5 ÷ 1 allow to achieve a vertical beam size smaller than 3 mm

According to the well know formula of the v_z and due to the high γ value (1.86) we need to use high flutter values to minimize the spiral angle

Small value of spiral angle leaves more space for the cavities in the valleys

 $\gamma = 1.86 \rightarrow 1 - \gamma^2 \beta^2 = -1.45$

1.95<
$$\frac{N^2}{N^2 - 1} F_l(1 + 2\tan^2 \xi) < 2.45$$

$$F_l=1.27 \rightarrow \xi=27$$

$$F_l > 2.1 \rightarrow \xi = 0$$
, Bhill>6.6 T

Injection Trajectory

Beam envelope H2+, along the extraction path

1.5 MW beam @ 800 MeV → power lost < 6.6 W on each stripper foil, thickness 2 mg/cm², 2 strippers solution

The electrons removed by the strippers have a full power of 1.5 MW*M_e/M_{H2}=1.5/(2*1822)=411 W (205 W per stripper)

The electrons can be stopped before strike the stripper foil

Ex	perimenta	l stripper	mean life for	H- and extra	polated v	value for H2+

Ion	Beam	Foil	Ι	Electrons	Electrons	Mean	Mean
	energy	thickness	beam	energy	power	life	life
H	30 MeV	$20 \mu\text{g/cm}^2$	1 mA	16 keV	32 W	40 mAh	40 h
H⁻	30 MeV	$40\mu g/cm^2$	1 mA	16 keV	32 W	20mA h	20 h
H	520 MeV	2 mg/cm^2	0.5 mA	290 keV	87 W	20 mA h	40 h
H_2^+	1600 MeV	2 mg/cm^2	<1> mA	440 keV	205 W	20 mAh	20 h

Stripper Thickness can be also thinner because no risk of neutral beam

RF Cavity preliminary simulation

3D and section views of the RF Cavity

RF Cavity Characteristics

- $\lambda / 2$, double gap
- 3 hollow stems to allow vacuum pumping
- Total height: 800 mm
- Cavity angular extension ≈ 13° -16°
- Radial extension \approx from 1300 mm to 4200 mm

Inside the stems we have enough room to install cryogenic pumps or cryogenic panel

RF Cavity preliminary simulation

RF Cavity Performances

- Resonant Frequency \approx 62 MHz ۲
- Quality Factor \approx 12.000
- Power dissipation @300kV (peak) \approx 250 kW •

Туре E-Field (peak) U/m Monitor Mode 1 3.32e6 2.37e6 1.67e6 **RF Voltage Distribution along the radius** 1.15e6 7.68e5 4.83e5 350 2.72e5 300 1.16e5 RF Voltage [kVolt] 250 $\Delta E/dI$ 200 1.7 MeV/n AE/dN 150 1.1 MeV/n 100 50 n 1,2 1.7 2,2 2.7 3.2 3.7 cyclotron radius [m]

Surface Current (peak)

Mode 1

4.2

A/m

8314 3908

2728 1853

1205 725 369

Electrical dissociation

The probability to remove the electron from the H- or from the H2+ ion is ruled by these formulas:

$$D = \frac{1}{2} \int_{0}^{1} \exp(-\frac{\alpha}{\mu}) d\mu \qquad \alpha = \frac{4}{3} \sqrt{2 \frac{m}{h^2}} W^{\frac{3}{2}} / eE \qquad \text{E}=0.3\beta \gamma \text{B} \text{ [MV/cm]}$$

Where:

 $\boldsymbol{\mu}$ is the cosine of the angle between the electric field and the direction of the Electron motion

m and e are the mass and charge of the electron

W is the binding energy of the electron

E is the electric field acting on the electron due to the Magnetic field

	H-	H2+	
Binding energy	0.755 eV	15.1 eV	
Magnetic field	<1.3> T	10 (6) T	
Energy (MeV/n)	30 MeV	800	
Electric field (MV/cm)	0.998	47 (28.2)	
α (arbitrary unit)	0.657	1.248 (2.08)	

Main Source of beam losses is interaction with residual gases $T=N/N_{0}=exp(-3.35 \ 10^{16} \int \sigma_{l}(E) \ P \ dl \)$ $\sigma_{l}(E) \approx 4\pi a_{0}^{2} \ (v_{0}/v)^{2} (Z_{t}^{2} + Z_{t})/Z_{i}$

Daedalus Cyclotron ≈ Daedalus Labirinth

Daedalus designed the labirinth (maze) to keep the Minotaur inside. But then himself has been kept there by Minos. So he flew away, escaping from the Labirinth. We are Designing the Daedalus Cyclotron, and we do not want to be trapped in! But we cannot fly!

Daedalus Cyclotron Collaboration

We invite the interested people, to be part of an international collaboration to design a reliable High Energy Cyclotron, putting together our best knowledge.

Thanks for your attention