Stripper foil developments at NSCL/MSU

Felix Marti, Scott Hitchcock, Peter S. Miller, Jeffry W. Stetson, John Yurkon

NSCL Stripper System

- K500 Injector cyclotron
- K1200 Booster cyclotron
 - Stripping energy ~ 10 MeV/u
 - Bad environment
 - » 5 Tesla magnetic field
 - » Inside the high voltage RF structure
 - » No instrumentation

U

N

VERSI

Foil holders

Foil lifetime observations – Light ions

 For lighter ions (< Xe) the observed lifetimes agree reasonable well with the predictions from Baron's formula (1):

$$T(hours) = 36000 \frac{E / A(MeV / u)}{6Z_p^2 j(p\mu A / cm^2)}$$

(1) E. Baron, 8th Intl. Conf. Cyclotrons, IUCF, 1979 p. 2411

What destroys the foils? 1.- Sublimation

High temperature

1.E+04

1.E+03

1.E+02

Litetime (hours) 1.E+00 1.E-01 1.E-02 1.E-03

1.E-04

1.E-05

1.E-06

1,500

• Carbon sublimates, thickness changes and charge state distribution shifts toward lower charges.

2.000

U

N

IV

MICHIGAN STATE

ERSI

Stripper foil test chamber

Static Electron Beam Spot on Carbon Foil

• We can reproduce the temperature measurements for $\varepsilon = 0.4$

Rotating Beam on Carbon Foils (86 Hz, 33W)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Foil holder with pocket

- It is common to see foils that develop a tear. They appear to be under tension.
- In previous tests with thicker foils outside the cyclotron we succeeded in extending the foil life by "floating" it inside a pocket and allowing it to move.
- The same idea was applied in these frames shown here with graphene foils.
- These foils "wrinkled" but did not tear.
- We plan on pursuing this idea.

Science

What destroys the foils? 2.- Radiation damage

Office of Science

U

NIVERSI

F. Marti, 9 September, Cyclotrons 2010 , Slide 10

Foil performance decay with 8.1 MeV/u Pb ions

- Experiment performed in the K1200 cyclotron (27+→63+)
- Significant decay observed at 10¹⁴ ions in 4 mm² in the cyclotron test = 2.5 10¹⁵ ions/cm²
- Not practical to use at the present time.
- We need to study temperature dependence. Is there annealing?

What was the temperature during the Pb test?

- Full power deposited on foil = 0.72 W (1.4% of beam power)
- Beam power applied in stages using a chopper (2kHz)
 - 20%
 - 50%
 - 100%
- Even at full power (100 %) the temperature barely exceeds 1000 degrees K.
- Sublimation effects should be minimal.

SEM photographs of foil before irradiation

8.1 MeV/u Pb Beam on Carbon Foils at NSCL/MSU

U

NI

V

ERSI

F. Marti, 9 September, Cyclotrons 2010 , Slide 14

SEM photographs of Pb irradiated foil, beam area

Science

SEM of the beam irradiated area

FRIB

SEM photos of MicroMatter foils heated with e-gun

- These foils were heated to temperatures around 1700-2000 deg. K
- Although they wrinkled immediately the structure is quite different from the foils exposed to the Pb beam.

Office of Science

Ion hammering effect?

- Transverse growth and longitudinal thinning compatible with "lon hammering" as proposed by Klaumunzer
- What is the <u>threshold</u> dE/dex?
- Which material, appropriate for a stripper, has the largest threshold value?

A. Benyagoub and S. Klaumunzer, Radiation Effects and Defects in Solids, 1993, vol. 126, pp. 105-110

MICHIGAN STATE

NIVERSI

U

Status

- We believe that we understand the thermal behavior of the foils.
- The mechanical stresses are significant and depend on the projectiles
- The heavier ions produce an expansion of the foils in the transverse plane and a thinning in the beam direction
- As the foils become thinner the charge state distribution shifts toward lower charge states and the output from the cyclotron decreases very fast
- An interpretation of this thinning is compatible with the "ion hammering" effect.
- We do not have a good way of running intense beams of U yet.

What is FRIB?

Facility for Rare Isotope Beams

- 400 kW E/A > 200 MeV/u Superconducting Linac Driver
- ~ 40 kW beam @ 16.5 MeV/u at stripper

UΝ

FRIF

Multiple charge acceleration (for U^{33+,34+} before stripper)

VERSI

FRIB Stripper

- A slot length of 2.5 m has been reserved in the first bend for the stripper system. It is compatible with all the alternatives being explored.
- The energy spread should be small to reduce the beam losses downstream, i.e. small thickness variations $(\pm 10\%).$
- The floor plan will allow the storage of two extra stripper modules that can be moved into operations in a short time

U

Charge State for Different Stripper Alternatives

FRIB

Technical Alternatives

- Solid carbon based foil (high charge state, simple system)
 - Baseline design
 - Thermal-mechanical issues studied at NSCL/MSU
 - Radiation damage issues studied at NSCL/MSU and RIKEN
 - R&D established that this is not a viable alternative
- Liquid lithium (high charge state)
 - Film thickness and stability studied at ANL
- Gas stripper with differential pumping (lower charge state, long lifetime)
 - Studied at RIKEN and NSCL/MSU
- Gas stripper with plasma windows (high charge state if He confinement is successful)
 - Studied at BNL and NSCL/MSU

Office of Science

- Plasma stripper (potential for high charge state)
 - Studied at BNL. Stability and <Q> to be determined
- Selection of preferred option done by November 2011, consistent with cryoplant order date

Acknowledgements

- NSCL operators (specially R. Rensock and S. Krause)
- J. Oliva, D. Ipple and T. Xu for their mechanical design help with the electron gun test chamber.
- RIKEN personnel (specially H. Okuno, H. Kuboki and H. Hasebe)
 - For FRIB work:
- C. Reed and collaborators from ANL for their liquid lithium work
- A. Hershcovitch and P. Thieberger from BNL for the plasma windows work

Thank you for your attention

This material is based upon work supported by the Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and NSF Grant PHY-0606007

