The Accelerator System for ReA3 – the New Re-accelerated RIBs Facility at MSU

Xiaoyu Wu

Acknowledgements

- Accelerator R&D
 - O. Kester
 - F. Marti
 - M. Doleans
 - C. Compton
 - W. Hartung
 - L. Popielarski
 - J. Popielarski
 - J. Wlodarczak
 - Q. Zhao
 - C. Benatti
 - G. Perdikakis

- Mechanical Engineering
 - D. Lawton
 - J. Ottarson
 - M. Johnson
 - J. Wenstrom
- Nuclear Physics
 - D. Bazin
 - G. Bollen
 - S. Schwarz
 - J. Yurkon
 - F. Montes

- Facility/Operation
 - D. Sanderson
 - A. Zeller
 - S. Chouhan
 - J. Bierwagen
 - S. Bricker
 - N. Verhanovitz
 - M. Portillo
 - J. Delauter
 - P. Miller
 - G. Machicoane
 - D. Cole
- Electronics
 - J. Vincent
 - K. Davidson
 - N. Usher
 - K. Holland

 Special thanks to B. Laxdal and colleagues from TRIUMF

Production of RIBs by Projectile Fragmentation at NSCL

NSCL Present Facility Layout

Facility for Rare Isotope Beams (FRIB)

- >200 MeV/u for all ions
- •400kW
- Superconducting driver linac
- Three-stage fragmentation separator
- Successfully passed DOE CD-1 review
- To be completed in
- ~2018

ReA3 Connections to CCF and FRIB

- ReA3 will be operated as a radioactive beam reaccelerator for the Coupled Cyclotron Facility in the coming years
- ReA3 will be operated as a radioactive beam reaccelerator for FRIB once the FRIB driver linac is operational and replaces the coupled cyclotrons
- ReA3 shares similar technology as the FRIB driver linac
 - Low energy beam lines for ion beams
 - RFQ
 - SRF linac
- ReA3 will provide valuable experience to FRIB for tuning strategies, particularly for SRF linac phasing strategy and development of beam tuning applications

ReA3 platform

ReA3 platform

ReA3 hardware

EBIT Charge Breeder

LEBT

Q/A Separator

RFQ

SC Linac

HEBT

ReA3 – EBIT charge breeder

Unique features:

- Continuous injection of ions
 - » high capture rate
- Variable extraction duty cycle
 - » μs pulse to quasi-continuous
- Short breeding time (<10 ms)</p>
- High efficiency
 - > 50% in a single charge state

EBIT installation will be completed in October,
Simulations are performed to optimize performance,
Injection tests end of 2010!

Achromatic Q/A-separator

Low energy beam transport (LEBT)

Beam Diagnostics (LEBT)

Emittance Scans

- RFQ transverse acceptance >
 - $\varepsilon_n = 1.0 \pi$ -mm-mrad
 - $\epsilon_{\rm g}$ = 200 π -mm-mrad (@ RFQ input energy of 12 keV/u)
- Desired twiss parameters $\alpha = 0.6$ and $\beta = 0.06$ m
 - Measured beam emittances fit into RFQ transverse acceptance

RT 4-rod RFQ

rods (milled from Cu profiles)

stem

tı

tuning plate

New design:

- Al-tank (no copper plating required)
- Simple adjustment of tuning plates, no alignment required
- > High power operation

RFQ installed in beam line, Conditioning started, Beam tests in September 2010!

ReA3 SRF-cryomodules

ReA3 -

- 3 ReA3 Cryomodules
- 15 cavities
- 2 cavity types (QWR)
 - Beta=0.041 & 0.085
 - Same as FRIB design
- 8 solenoids
 - Same as used in FRIB

First two cryomodules completed, third in progress to be completed Q2FY2011

re-buncher

 β = 0.041 module

 $\beta = 0.085$ module

SRF-LINAC infrastructure

Michigan State University

Building cryomodules!

Clean room assembly of cold mass required!

Cold-mass ReA3 Cryomodule

Cryogenic
Distribution System

Performance tests of cavities and solenoids.

Thermal Shield

Vacuum Vessel ReA3 design

ReA3 – QWRs testing

ReA3 High Energy Beam Transport (HEBT)

ReA3 Facility Layout

Strong interests using ReA3 RIBs for nuclear astrophysics experiments

ReA3 Beam Simulations

ReA3 Beam Simulations

ReA3 Beam Simulations

ReA3 to ReA6 Upgrade

ReA6 Facility Layout

ReA6 to ReA12 Upgrade

Re-Accelerator Energy Increase with Additional Cryomodules

NSCL Pre-FRIB (2016) Facility Layout

Fast, Stopped, and Re-accelerated RIBs at NSCL with FRIB

RIBs from FRIB

Summary ReA3 status

- ➤ Test of EBIT electron beam system done, magnet commissioned, assembly ongoing → first operation October
- Q/A-separator beam commissioning completed
- LEBT beam commissioning is presently performed
- > RFQ tuning completed, conditioning ongoing, first beam tests in early September 2010
- > SRF-linac:
 - re-buncher rf-tests completed, first beam tests in conjunction with RFQ beam commissioning
 - $-\beta$ = 0.041 module installed, hardware tests are being performed
 - $-\beta = 0.085$ under construction
- ➤ Accelerated stable beams → end of 2010
- Reaccelerated beams in 2011

