FFAG DEVELOPMENTS IN JAPAN

Yoshiharu Mori Kyoto University, Research Reactor Institute

CONTENTS

- Introduction
- Lepton acceleration
 - Muon
 - Osaka University
 - Kyoto University
 - Electron
 - NHV Co.
- Hadron acceleration
 - Proton & Ion
 - Kyoto University
 - Kyusyu Univerisity
- Summary

DEVELOPMENTS OF FFAG IN JAPAN

FFAG

- Strong focusing in 3-D: AG-focus in transverse and phase focus in longitudinal directions
 - It is like synchrotron.
 - Large acceptance
 - Various longitudinal RF gymnastics become possible.
 - Bunching, Stacking, Coalescing, etc.
- Static magnetic field: small orbit excursion.
 - It is like cyclotron, but not much orbit excursion
 - Fast acceleration
 - Fixed magnetic field allows the beam acceleration only by RF pattern.
 - No needs of synchronization between RF and magnets.
 - Large repetition rate
 - Space charge and collective effects are below threshold.

TYPES OF FFAG OPTICS

• Zero chromaticity : Scaling FFAG

- Betatron tunes during acceleration are constant.
- Free from resonance crossing.
- Orbit configurations for different beam momentum(energy) are (nearly) similar.
- Very Large momentum acceptance : $\Delta p/p > +-100\%$
- Non-zero chromaticity : Non-scaling FFAG
 - Optical elements are all linear : dipole and quadrupole magnets.
 - Betatron tunes are varied during acceleration.
 - Need fast resonance crossing : very fast acceleration.
 - Large dynamic aperture

А

ZERO CHROMATICITY SCALING FFAG RING

Betatron oscillation (cylindrical coordinate)

• Zero chromaticity : constant betatron tunes during acceleration

ZERO CHROMATICITY SCALING FFAG RING

• Betatron oscillation (cylindrical coordinate)

$$\frac{d^2x}{d\theta^2} + \frac{r^2}{\rho^2} (1 - K\rho^2) x = 0$$
$$\frac{d^2z}{d\theta^2} + \frac{r^2}{\rho^2} (K\rho^2) z = 0$$

$$K = -\frac{1}{B\rho} \frac{\partial B}{\partial r}$$

• Zero chromaticity : constant betatron tunes during acceleration

$$\frac{d\left(r^2/\rho^2\right)}{dp} = 0$$

ZERO CHROMATICITY SCALING FFAG RING

• Betatron oscillation (cylindrical coordinate)

• Zero chromaticity : constant betatron tunes during acceleration

$$\frac{d\left(r^{2}/\rho^{2}\right)}{dp} = 0$$
$$\frac{d\left(K\rho^{2}\right)}{dp} = 0$$

Α

ZERO CHROMATICITY SCALING FFAG RING

• Betatron oscillation (cylindrical coordinate)

$$\frac{d(r^2/\rho^2)}{dp} = 0 \qquad \begin{cases} r \propto \rho \\ \frac{d(K\rho^2)}{dp} = 0 \end{cases} \begin{cases} \frac{r}{B} \left[\frac{\partial B_z}{\partial r}\right]_{z=0} = k \end{cases}$$

ZERO CHROMATICITY SCALING FFAG RING

• Betatron oscillation (cylindrical coordinate)

Zero chromaticity : constant betatron tunes during acceleration

$$\frac{d(r^2/\rho^2)}{dp} = 0 \qquad \begin{cases} r \propto \rho \\ \frac{r}{B} \left[\frac{\partial B_z}{\partial r} \right]_{z=0} \end{cases} = k$$

$$B_{z} = B_{0} \left(\frac{r}{r_{0}}\right)^{k} f(\theta)$$

AG FOCUSING LATTICE OF SCALING FFAG RING

- $B_{z} = B_{0} \left(\frac{r}{r_{0}}\right)^{k} f(\theta)$
 - AG focusing : FODO lattice
 - Radial sector
 - F: positive bend
 - D:negative bend
 - Spiral sector
 - F: positive bending
 - D: edge focusing

2010年9月9日木曜日

ADVANCED SCALING FFAG ACCELERATOR - FFAG STRAIGHT LINE -

- Symmetric circular scaling FFAG
- Cons/
 - Large dispersion:orbit excursion becomes large
 - Large horizontal aperture magnet
 - Large horizontal aperture rf cavity \rightarrow Low frequency rf system is needed.
 - Short straight section
 - Small space for injection/extraction → Kicker/septum require large aperture.
 - Small space for rf cavity \rightarrow High gradient rf is needed.
- We need a long straight line with small dispersion keeping "Zero-chromaticity".
- Is it possible to make a scaling FFAG straight line(lattice)?
 - Keeping a scaling law : zero chromaticity
 - Reducing dispersion : dispersion suppressor
 - Making a good match with circular FFAG ring : insertion
- What is a configuration of the magnetic field for scaling FFAG straight line? Obviously,

$$B_z \neq B_0 \left(\frac{r}{r_0}\right)^k f(\theta)$$

2010年9月9日木曜日

ZERO CHROMATICITY SCALING FFAG STRAIGHT LINE

• Betatron oscillation (linear coordinate)

$$\frac{d^2x}{ds^2} + \frac{1}{\rho^2} \left(1 - K\rho^2\right) x = 0$$

$$\frac{d^2z}{ds^2} + \frac{1}{\rho^2} \left(K\rho^2\right) z = 0 \qquad \qquad K = -\frac{1}{B\rho} \frac{\partial B}{\partial x}$$

 $\frac{1}{ds^2} + \frac{1}{\rho^2} (K\rho^2) z = 0 \qquad B\rho \ \partial x$ • Zero chromaticity : constant betatron tunes for various beam momentum

ZERO CHROMATICITY SCALING FFAG STRAIGHT LINE

Betatron oscillation (linear coordinate)

$$\frac{d^2 x}{ds^2} + \frac{1}{\rho^2} \left(1 - K\rho^2 \right) x = 0$$

$$\frac{d^2 z}{ds^2} + \frac{1}{\rho^2} \left(K\rho^2 \right) z = 0 \qquad \qquad K = -\frac{1}{B\rho} \frac{\partial B}{\partial x}$$

• Zero chromaticity : constant betatron tunes for various beam momentum

$$\frac{d\left(1/\rho^2\right)}{dp} = 0$$

7FRO CHROMATICITY SCALING FFAG STRAIGHT LINE

• Betatron oscillation (linear coordinate)

$$\frac{d\left(1/\rho^2\right)}{dp} = 0$$
$$\frac{d\left(K\rho^2\right)}{dp} = 0$$

ZERO CHROMATICITY SCALING FFAG STRAIGHT LINE

Betatron oscillation (linear coordinate)

• Zero chromaticity constant betatron tunes for various bears momentum

$$\frac{d(1/\rho^2)}{dp} = 0 \qquad \left\{ \begin{array}{l} \rho = const. \\ \frac{1}{B} \left[\frac{\partial B_z}{\partial x} \right]_{z=0} = \frac{n}{\rho} \end{array} \right\}$$

ZERO CHROMATICITY SCALING FFAG STRAIGHT LINE

Betatron oscillation (linear coordinate)

$$\frac{d^2 x}{ds^2} + \frac{1}{\rho^2} \left(1 - K\rho^2 \right) x = 0$$

$$\frac{d^2 z}{ds^2} + \frac{1}{\rho^2} \left(K\rho^2 \right) z = 0 \qquad \qquad K = -\frac{1}{B\rho} \frac{\partial B}{\partial x}$$

• Zero chromaticity constant betatron tunes for various beam momentum

$$B_z = B_0 \exp\left[\frac{n}{\rho}x\right]$$

SCALING FFAG STRAIGHT LINE

- Scaling(zero-chromatic) FFAG straight line (JB. Lagrange)
 - Example
 - Proton beam
 - Energy range : E=80~200MeV

Table 1: Tracking parameters	
Length of the magnets	60 cm
Drift	40 cm
Kinetic energy range	80 to 200 MeV
Field index	17
Local curvature radius	2.1 m
Step size	1 mm
Phase advances:	
horizontal μ_x	104.8 deg.
vertical μ_z	112.5 deg.

DISPERSION SUPPRESSOR/ INSERTION MATCHING

- Dispersion suppressor
 - Successive π -cells in the horizontal plane can suppress the dispersion.
 - Help to reduce the size of apertures of the magnet and rf cavity.

- Insertion matching
 - Matching condition for closed orbit between ring and straight line

ADVANCEMENT OF SCALING FFAG

2010年9月9日木曜日

ADVANCEMENT OF SCALING FFAG

2010年9月9日木曜日

ADVANCEMENT OF SCALING FFAG

$$B_z = B_0 \exp\left[\frac{n}{\rho}x\right]$$

ADVANCEMENT OF SCALING FFAG

$$B_z = B_0 \exp\left[\frac{n}{\rho}x\right]$$

ADVANCEMENT OF SCALING FFAG

$$B_z = B_0 \exp\left[\frac{n}{\rho}x\right]$$

- Beam acceleration in the scaling FFAG has varieties.
 - Momentum compaction is constant during acceleration
 - Variable frequency rf acceleration
 - Broad-band rf cavity
 - MA(magnetic alloy) cavity : Q~I
 - Fixed frequency rf acceleration
 - Stationary bucket
 - Serpentine bucket
 - Harmonic number jump

- Beam acceleration in the scaling FFAG has varieties.
 - Momentum compaction is constant during acceleration
 - Variable frequency rf acceleration
 - Broad-band rf cavity
 - MA(magnetic alloy) cavity : Q~I
 - Fixed frequency rf acceleration
 - Stationary bucket
 - Serpentine bucket
 - Harmonic number jump

- Beam acceleration in the scaling FFAG has varieties.
 - Momentum compaction is constant during acceleration
 - Variable frequency rf acceleration
 - Broad-band rf cavity
 - MA(magnetic alloy) cavity : Q~I
 - Fixed frequency rf acceleration
 - Stationary bucket
 - Serpentine bucket
 - Harmonic number jump

- Beam acceleration in the scaling FFAG has varieties.
 - Momentum compaction is constant during acceleration
 - Variable frequency rf acceleration
 - Broad-band rf cavity
 - MA(magnetic alloy) cavity : Q~I
 - Fixed frequency rf acceleration
 - Stationary bucket
 - Serpentine bucket
 - Harmonic number jump

- Beam acceleration in the scaling FFAG has varieties.
 - Momentum compaction is constant during acceleration
 - Variable frequency rf acceleration
 - Broad-band rf cavity
 - MA(magnetic alloy) cavity : Q~I
 - Fixed frequency rf acceleration
 - Stationary bucket
 - Serpentine bucket
 - Harmonic number jump

FIXED FREQUENCY RF ACCELERATION -SERPENTINE BUCKET-

- Two rf buckets below and above the transition energy are interfered in the strong focusing machine. Serpentine path between two buckets exist. (Sessler, Symon)
- In the scaling FFAG, hamiltonian of longitudinal motion can be obtained analytically. (Yamakawa, Uesugi, Mori)
 - Either relativistic or non-relativistic beam can be accelerated with fixed frequency rf cavity

$$H = 2\pi m_0 c^2 \left[\frac{\left(\gamma_s^2 - 1\right)^{\lambda} \left(\gamma^2 - 1\right)^{-\lambda + 1}}{2\gamma_s} + \gamma \right] + e \frac{V_{rf}}{h} f_0 \cos \phi$$

$$\lambda = \frac{k}{2(k+1)}$$

$$\frac{dp}{dT} = 0: \quad p = \gamma_1 \text{ and } \gamma_2$$

$$\gamma_1$$

HISTORY

• Idea

• 1950s Okawa(Japan), Kerst-Symon(USA), Kolomenskii (USSR)

• Developments

- 1960s MURA project (USA) Electron models
- 2000 POP-FFAG (KEK, Japan) First proton FFAG
- 2004 I 50-MeV proton FFAGs (KEK, Kyusyu, Japan)
- 2005 R&Ds for various applications:RACAAM(Grenoble, France), PD(FNAL, USA), etc.
- 2008 Proton FFAGs for ADSR (Kyoto, Japan)
- 2008 PRISM-FFAG for muon (Osaka, Japan)
- 2009 e-FFAG(NHV, Japan)
- 2010 EMMA(Daresbury, England) First non-scaling FFAG

HISTORY

• 2009 e-FFAG(NHV, Japan)

• 2010 EMMA(Daresbury, England) First non-scaling FFAG

HISTORY

• Idea

• 1950s Okawa(Japan), Kerst-Symon(USA), Kolomenskii (USSR)

• Developments

- 1960s MURA project (USA) Electron models
- 2000 POP-FFAG (KEK, Japan) First proton FFAG
- 2004 I 50-MeV proton FFAGs (KEK, Kyusyu, Japan)
- 2005 R&Ds for various applications:RACAAM(Grenoble, France), PD(FNAL, USA), etc.
- 2008 Proton FFAGs for ADSR (Kyoto, Japan)
- 2008 PRISM-FFAG for muon (Osaka, Japan)
- 2009 e-FFAG(NHV, Japan)
- 2010 EMMA(Daresbury, England) First non-scaling FFAG

HISTORY

HISTORY

• Idea

• 1950s Okawa(Japan), Kerst-Symon(USA), Kolomenskii (USSR)

• Developments

- 1960s MURA project (USA) Electron models
- 2000 POP-FFAG (KEK, Japan) First proton FFAG
- 2004 I 50-MeV proton FFAGs (KEK, Kyusyu, Japan)
- 2005 R&Ds for various applications:RACAAM(Grenoble, France), PD(FNAL, USA), etc.
- 2008 Proton FFAGs for ADSR (Kyoto, Japan)
- 2008 PRISM-FFAG for muon (Osaka, Japan)
- 2009 e-FFAG(NHV, Japan)
- 2010 EMMA(Daresbury, England) First non-scaling FFAG
HISTORY EMMA:Electron Model for Muon Accelerator under constraction at UK

FFAGS FOR LEPTON BEAM ACCELERATION IN JAPAN

• Muon

- Osaka University
- Kyoto University
- Electron
 - NHV Co.

OSAKA UNIVERSITY

Y.Kuno, A.Sato

MOTIVATION

- Research for new physics beyond Standard Theory with μ -e conversion rare event experiment

$$B(\mu^- + Ti \to e^- + Ti) < 10^{-18}$$

- To do this,
- with a muon storage ring to reduce the energy spread and pion background.
- with a fast-extracted pulsed proton beam.
- need a new beamline and experimental hall.
- Ultimate search

Demo. of Phase Rotation with α -particles

- FFAG-ring
 - PRISM-FFAG Magnet x 6、 RF x 1
- Beam : α -particles from radioactive isotopes
 - ²⁴¹Am 5.48MeV(200MeV/c) \rightarrow degrade to 100MeV/c
 - small emittance by collimators
 - pulsing by electrostatic kickers
- Detector : Solid state detector
 - energy
 - timing

Comparison b/w data and simulation

SCHEMATIC LAYOUT OF PRISM WITH ADVANCED FFAG

2010年9月9日木曜日

KYOTO UNIVERSITY RESEARCH REACTOR INSTITUTE

T.Planche, JB Lagrange, Y.Mori

Muon accelerator for Neutrino Factory

Advanced scaling FFAG for PRISM

MUON ACCELERATOR FOR NEUTRINO FACTORY

- Motivation
- To replace RLA(recirculating linac) to scaling FFAG
 - Cost effective
 - Large acceptance :
 - Transverse >30πmm.rad
 - Longitudinal > 150mm
 - Free from longitudinal emittance degradation caused by TOF dependence of transverse beam emittance

MUON ACCELERATOR FOR NEUTRINO FACTORY

- Motivation
- To replace RLA(recirculating linac) to scaling FFAG
 - Cost effective
 - Large acceptance :
 - Transverse >30πmm.rad
 - Longitudinal > 150mm
 - Free from longitudinal emittance degradation caused by TOF dependence of transverse beam emittance

RING PARAMETERS OF A 3.6-12.6GEV MUON RING

Table I - Example of 3.6 to 12.6 GeV muon scalingFFAG ring parameters.

FULL ACCELERATION CYCLE - 6D TRACKING

- Tracking results -

Initial (blue) and final (red) particles distribution in the horizontal (top), and vertical (bottom) phase space. Longitudinal phase space plot showing a 6turn acceleration cycle. Hamiltonian contours are superimposed.

NEW PRISM RING WITH ADVANCED SCALING FFAG

Race-track ring for beam injection/extraction and rf cavity

EXPERIMENT OF SCALING FFAG STRAIGHT LINE

- Clarify the FFAG straight line experimentally with πsection
 - Dispersion suppressor
 - Insertion matching
- Momentum range
 - 0.0811 0.1441 GeV/c
 - H- ion beam

NHV CO.

T.Baba, M.Yuasa Prototype of FFAG Electron Accelerator: sterilization etc.

Energy Inj. / Ext.	50 / 500keV
Orbit radius Inj. / Ext.	0.19 / 0.44m
Acceleration frequency	10kHz
Beam Current	100mA peak
Duty	20%
Outer diameter	1.1m

(286)

(1000

2010年9月9日木曜日

Results of the Development

- Accelerator assembling is completed.
- Beam injection and acceleration are successful.
- 90% of the beam is extracted form FFAG ring.
- Extracted beam energy is measured as same as the specified energy.

10MeV Electron Accelerator

2010年9月9日木曜日

MITSUBISHI ELECTRIC CO. F.Tanaka-CYCLOTRON 2004

LAPTOP Electron accelerator

• FFAG(injection/extraction)+Betatron(acceleration)

Proto-type Machine

Injection Energy	50 [keV]
Acceleration Energy	6 [MeV]
Injection Radius	0.1 [m]
Extraction Radius	0.125[m]
K value	2~3
Magnet	Spiral Sector Magnet
Repetition	1 [kHz]
Duty	2 [%]
Energy after injection	50~250[keV]

FFAGS FOR HADRON BEAM ACCELERATION IN JAPAN

- Proton & lons
 - Kyusyu University
 - Kyoto University

KYUSYU UNIVERSITY

Construction of new accelerator center

Main accelerator : FFAG Synchrotron

The test machine that Mori's group developed is under re-installation.

Newly constructed machine still under development Further development at Kyushu

A machine with various possibilities Challenges for new usage

2010年9月9日木曜日

Design values of the FFAG Synchrotron

magnet	Radial sector type (DFD-triplet)
Cell	12
K-value	7.62
Beam energy	12 ⇒150 MeV
	$(10 \Rightarrow 125 \text{ MeV})$
Radius	4.47 ⇒ 5.20 m
Betatron tune	H: 3.69~3.80
	V: 1.14~1.30
Max. field	F-field: 1.63 T
(along orbit)	D-field: 0.78 T
Circ. freq.	1.55 ~ 4.56 MHz
Repetition	100 Hz

Various field studied with FFAG

Acceleration of unstable nuclei and isomers

*Acceleration of unstable nuclei

*Acceleration of isomers

$$\begin{array}{cccc} {}^{16}\text{O} + {}^{39}\text{K} & \rightarrow {}^{52\text{m}}\text{Fe} + \text{p,n,n} & {}^{18}\text{O} + {}^{9}\text{Be} & \rightarrow {}^{24\text{m}}\text{Ne} + \text{p,n,n} \\ (40\text{MeV}) & (10\text{MeV}) & (35\text{MeV}) & (20\text{MeV}) \\ & \Rightarrow & (100\text{MeV}) & \Rightarrow & (200\text{MeV}) \\ \end{array}$$

Advantage:

•High quality unstable beam for all elements

Subjects

- Structure of high-spin isomer, Astro-nuclear data
- Diffusion process in material

Requirement to accelerator

•Large acceptance (longitudinal and transverse)

KYOTO UNIVERSITY RESEARCH REACTOR INSTITUTE (KURRI) FFAG-ADSR PROJECT

- Purpose of the project
 - Basic study of ADSR(Accelerator Driven Sub-critical Reactor) with FFAG accelerator and KUCA(Kyoto University Critical Assembly)

• KUCA

- Output power ~100W
- Neutron amplification : $\alpha = 1/(1-k_{eff})$. If $k_{eff}=0.99$, $\alpha = 100$
- Beam power should not exceed < I W!!
- Beam power is also limited by radiation safety because the beam passes only Im away from office.
 - cf. For 100MeV proton beam, I<10nA
- FFAG Accelerator Complex
 - Beam energy 100-150MeV (variable)
 - Beam current InA

Seminar, JUAS, Feb. 15, 2010

FFAG-KUCA ADSR PROJECT AT KURRI

Layout of FFAG Accelerators in Innovation Laboratory

FFAG accelerator complex

KUCA-A Core - solid moderated and reflected -

Items of ADSR experimental study

- High energy neutron spectrum
- Reactivity distribution, neutron distribution and proton profile at the reactor core
- Reactor response for abrupt changes in reactivity: beam trip, negative reactivity introduction, etc.
- Sub-criticality measurement with pulsed neutron method
- Dynamical behaviors with Feynman-& method

Seminar, JUAS, Feb. 15, 2010

ADSR EXPERIMENT

WORLD FIRST ADSR EXPERIMENT WITH SPALLATION NEUTRONS -THE FIRST FFAG USED FOR APPLICATION-

2010年9月9日木曜日

FIRST DATA

Journal of Nuclear Science and Technology, Vol.46 No.12, pp.1091-1093(2009).

Measurement of neutron multiplication

REACTIVITY DISTRIBUTION

corel: core-axial

Good agreement with the MCNPX predictions

SUB-CRITICALITY & DYNAMICAL BEHAVIOR

PNM and Feynman- α were both useful for detecting the sub-criticality during operation.

Feynman-**a**

pulsed neutron method

THORIUM LOADED CORE MAR. 3, 2010

2010年9月9日木曜日

SCIENCE PROJECTS WITH INTENSITY UPGRADED FFAG

- ADSR engineering experiment with a new "high-power sub-critical system" (not reactor)
 - Output power (SC) ~10kW: proton beam power >kW
 - Engineering study: cooling(heat transfer), materials, control of reactivity, etc.
- Nuclear data taking
 - Energy range of neutrons 0.1-10MeV : complementary for e-Linac
 - Pulsed beam 30nsec, 60Hz
 - Neutron yield: 5×10^{13} n/sec @60Hz operation
- Pulsed spallation neutron source
 - Beam power ~IkW
 - Pulsed beam 30nsec, 15(30)Hz
 - Innovated neutron target -> cf. 2nd target at Rutherford Lab.

CYCLOTRON'10, Sept. 6-10, 2010, Lanzhou

NEUTRON YIELD FOR NUCLEAR DATA TAKING

Average flux (per second)

Reference: F. Gunsing, et al., Nucl. Instrum. Meth., B 261, 925-929 (2007).

FUTURE CYCLOTRON'10, Sept. 6-10, 2010, Lanzhou 0.7-IGEV -B. QIN(THIS CONFERENCE)-

FUTURE CYCLOTRON'10, Sept. 6-10, 2010, Lanzhou 0.7-IGEV -B. QIN(THIS CONFERENCE)-

FUTURE CYCLOTRON'10, Sept. 6-10, 2010, Lanzhou 0.7-IGEV -B. QIN(THIS CONFERENCE)-

CYCLOTRON'10, Sept. 6-10, 2010, Lanzhou

CYCLOTRON'10, Sept. 6-10, 2010, Lanzhou

FFAG-ERIT RING

- Thanks to
- Y. Kuno, A.Sato (Osaka Univ.)
- N.Ikeda, Y.Yonemura (Kyusyu, Univ.)
- T.Baba, M.Yuasa (NHV Co.)
- F.Tanaka(Mitsubishi Electric Co.)
- H.Unesaki, K.Hori(KURRI) and KUCA group at KURRI
- All members of FFAG group at KURRI

Japan-Korea Summer School, 6/28/10, 水原

FFAG'IO

Kyoto Univ. Research Reactor Institute (KURRI) Osaka, Japan Oct. 26-31

FFAG Accelerator School Oct. 26-27 International Workshop on FFAG Accelerator (FFAG'10) Oct. 28-31

Students and young scientists are very welcome!