

HIGH INTENSITY ION BEAMS AT GANIL F. Chautard, September 6th, 2010

OUTLINE

- Operation modes at GANIL
- Statistics
- Stable beams
- Exotic beams
 - ► ISOL
 - In Flight
- Beam developments
 - Stable beams
 - Exotic beams
- Machine developments
 - Diagnostics and purification
- Foreseen operation with SPIRAL2

Multi-Beam Operating Mode: 5 experiments in parallel with <u>stable beams</u>

SPIRAL1 operating mode: 4 experiments in parallel

Radioactive ion beams with «ISOL» method since 2001 (W<25MeV/u)

Acceleration and Purification in the compact cyclotron CIME

Cyclotron 2010 - Lanzhou, China, september 6 -10. - F. Chautard

GANIL heavy ion beams up to 95 MeV/u onto a thick carbon target

radioactive atoms

fication n CIME

Radioactive ion beams with «In Flight» method (W<95 MeV/u)

2kW beam onto rotating target

13

CSS2

CSS1

L4

L5

SPIRAL

Multi-beam operating mode: Beam schedule

Date	hour	C01	C02	CSS1, CSS2	CIME	SME	Auxiliary beam
	6h00			36Ar18+			
Saturday	10h00			95 MeV/A			
25-Sep	14h00						
	18h00		36Ar	Test SPR D1			
	22h00		95 MeV/A	P832			
	2h00			(Testard)			E587 S
	6h00	Change of		D1			(I. Martel)
Sunday	10h00	source chamber		2 U T			
26-Sep	14h00			P858			
	18h00			(Fourdrin)			
	22h00			D1			
	2h00	Outgassing					
	6h00		36Ar	P858			
Monday	10h00	Tuning ECR	95 MeV/A	(Fourdrin)			E587 S
27-Sep	14h00	13C3+		D1	1602+		(l. Martel)
	18h00	Tuning C0		BUFFER	2.02 MeV/A		
	22h00	13C3+		Tuning Z	Tuning Z		
1	2h00				E587 S		
	6h00			13C6+	(I. Martel)		
Tuesday	10h00		Tuning ECR4	75 MeV/A	G21		
28-Sep	14h00		58Ni11+				
	18h00				8He1+		
	22h00	13C			2 MeV/A		
	2h00	75 MeV/A			2e5 pps		
	6h00						
Wednesday	10h00		Tuning C0		IBE		
29-Sep	14h00		58Ni11+ 0.8 MeV/A				
	18h00						
	22h00				E587 S	SME	
	2h00				(I. Martel)		
	6h00				G21		
Thursday	10h00				9 U T		
30-Sep	14h00		IRRSUD				
	18h00						
	22h00						
	2h00			BEAM			
	6h00			ON SPIRAL			
Friday	10h00			TARGET			
1-Oct	14h00						
	18h00						
	22h00						

GANIL per year: 30 weeks / 4 periods: 5000h of operating time. Leading to 9000h of beam time for users (multi-beam effect)

<u>SPIRAL1 since 2001:</u> 9755h of exotic beams. More than 30 exotic beams

Repartition beam time between GANIL and SPIRAL1

From 2001 to 2009

From 2001 to 2009

From 2001 to 2009

Intense Primary beams

http://pro.ganil-spiral2.eu/users-guide/accelerators/available-stable-ion-beams-atganil/view

In 1995, a High Intensity Transport safety system (THI) was studied and validated in 1998 in order to send a several kilowatt beam to the experimental rooms.

Beams	Imax [mAe]	10 ¹³ [pps]	Emax [MeV/u]	Pmax [W]	Used with Spiral
¹² C ⁶⁺	19	2	95	3 600	Planned
¹³ C ⁶⁺	18	2	75	2 900	Х
¹⁴ N ⁷⁺	15	1.6	95	3 400	Planned
¹⁶ O ⁸⁺	16	1	95	3 000	Х
¹⁸ O ⁸⁺	2.3	0.18	75	400	
²⁰ Ne ¹⁰⁺	15.7	1	95	2 400	Х
²² Ne ¹⁰⁺	15	1	80	2 600	Planned
²⁴ Mg ¹²⁺	20	1	95	3 800	Planned
³⁶ S ¹⁶⁺	11	0.43	77.5	1 900	Х
³⁶ Ar ¹⁸⁺	24	0.8	95	4 600	Planned
⁴⁸ Ca ¹⁹⁺	4.5	0.15	60	700	Х
⁵⁸ Ni ²⁶⁺	4	0.1	75	700	
⁷⁶ Ge ³⁰⁺	3.5	0.07	61	500	
⁷⁸ Kr ³⁴⁺	7	0.13	70	1 200	X
¹²⁴ Xe ⁴⁴⁺	2	0.03	50	300	

Intense Primary beams

2.10¹³pps Safety limitatio n reached

Possible improveme nt

Beam	lmax [μAe]	[pps] <2 10 ¹³	Emax [MeV/A]	Pmax [W] <6kW	Used with Spiral
¹² C ⁶⁺	18	1.9 10 ¹³	95	3 200	
¹³ C ⁶⁺	18	2. 10 ¹³	80	3 000	X
¹⁴ N ⁷⁺	15	1.4 10 ¹³	95	3 000	
¹⁶ 0 ⁸⁺	16	10 ¹³	95	3 000	Х
¹⁸ 0 ⁸⁺	17	10 ¹³	76	3 000	X
²⁰ Ne ¹⁰⁺	17	10 ¹³	95	3 000	X
²² Ne ¹⁰⁺	17	1013	79	3 000	
³⁶ S ¹⁶⁺	6.4	2.5 10 ¹ 2	77.5	1100	Х
³⁶ Ar ¹⁸⁺	16	5.5 10 ¹²	95	3 000	X
⁴⁰ Ar ¹⁸⁺	17	6. 10 ¹²	77	3 000	
⁴⁸ Ca ¹⁹⁺	4-5	1.3 10 ¹²	60	600-700	X
⁵⁸ Ni ²⁶⁺	5	1.2 10 ¹²	77	860	
⁷⁶ Ge ³⁰⁺	5	1.2 10 ¹²	60	760	
⁷⁸⁻⁸⁶ Kr ³⁴⁺	7.5	1.4 10 ¹²	70	1200	X
¹²⁴ Xe ⁴⁶⁺	2	2.7 10 ¹	53	300	

R&D: Intense Primary beams

It goes with an improvement of the oven for the metallic ion production.

• First, a modified version of the existing micro-oven at high temperature (1700° C max) to a higher capacity oven but at a lower average temperature (1100° C max).

• Second, build a large high capacity and temperature oven.

temperature

oven is foreseen.

• Above the 1700° C • Those developments are coherent limit, with the beam needs expressed by development with induction the SPIRAL2 project for the production of 48Ca¹⁶⁺ and 58Ni¹⁹⁺.

R&D: Intense Primary beams

Beams	lmax [μAe]	10 ¹³ [pps]	Emax [MeV/u]	Pmax [W]	Used with Spiral
⁶⁴ Zn ²⁸⁺	1.2	0.03	74	-	-
127 45+	0.23	0.03	49.5	-	-
¹³³ Cs ⁴⁷⁺	0.08	0.01	49.3	-	-
238U34+	0.04	0.01	7.8	_	-

The developments are driven by physics experiments foreseen by the GANIL Physics Advisory Committee

Exotic Beam Production : ISOL (SPIRAL1)

http://pro.ganil-spiral2.eu/users-guide/accelerators/spiralbeams

ions	W [MeV/u]	[pps]	ion	W [MeV/u]	[pps]
6He	3.8	2.8 10 ⁷	20F	3	1.5 10 ⁴
6He	2.5	3.7 10 ⁷	17Ne	4	4.104
6He	5	3.10 ⁷	24Ne	4.7	2.10 ⁵
6He	LIRAT (<34 keV/u)	2.10 ⁸	24Ne	7.9	1.4 10 ⁵
6He	20	5.10 ⁶	24Ne	10	2 105
8He	3.5	1.10 ⁵	26Ne	10	3.10 ³
8He	15.5	1.104	31Ar	1.45	1.5
8He	15.4	2.5 10 ⁴	33Ar	6.5	3.10 ³
8He	3.5	6.10 ⁵	35Ar	0.43	4.10 ⁷
8He	3.9	8.10 ⁴	44Ar	10.8	2.10 ⁵
140	18	4.10 ⁴	44Ar	3.8	3.10 ⁵
150	1.2	1.7 10 ⁷	46Ar	10.3	2.104
190	3	2.10 ⁵	74Kr	4.6	1.5 10 ⁴
200	3	4.10 ⁴	74Kr	2.6	1.5.104
200	4	4.10 ⁴	75Kr	5.5	2.10 ⁵
18Ne	7	1.10 ⁶	76Kr	4.4	4.10 ⁶
18F	2.4	2 104			

Foreseen Machine Developments

- ♦ A GANIL 2015 committee was created to identify the strength and weakness of the present facility in the close future range.
- One of the main recommendations is to extend the radioactive ion beam variety available from the SPIRAL1 facility.

ISOL Production Limitation with the actual Nanogan 3 source

ISOL Production Limitation with the actual Nanogan 3 source

- GANIL group project constituted
- Overview of source developments for SPIRAL1: done

Possible New Beams from graphite targets with SPIRAL1 design compatible sources

1	S	Surf	ace	o n									Nar	an	2		
н			ball	JU													He
3	4					5	6	7	8	9	10						
Li	Be					FR	В	С	N	0	F	Ne					
11	12						13	14	15	16	17	18					
Na	Mg						AI	Si	P	S	CI	Ar					
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	8		Л	86
Cs	Ва		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	В			Rn
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	(117)	118
Fr	Ra		Rf	Db	Sa	Bh	Hs	Mt	Ds	Ra	Uub	Uut	Uua	Uup	Uuh	(Uus)	Uuo

Mass limited to <~90 for various technical reasons, can be extended in the future.

The developments should be driven by physics cases (Lol)

Constraints for development of radioactive ion sources

R&D strategy

Ongoing projects priority :

- 1. 1+ compact source type FEBIAD
- 2. Charge breeder in CIME injection line
- 3. 1+/N+ compact sources : ECRHD (collaboration with PANTECHNIK)

1+ FEBIAD source (type VADIS ISOLDE) (Forced Electron Beam Induced Arc Discharge)

Thin window

- First mechanical design ok
- Thermal calculations ongoing
- Extraction optics ongoing

- Non selective source : Mg, Ca, Sc, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ce, As, Se, Al
- On line beam tests: fall of 2010
- But no acceleration by CIME (Q/A too low)

Coupling a charge breeder to a 1+ source

- 1+ source = compact to fit in the cave
- Breeder outside cave = accelerate beams in CIME

SPIRAL1 Beam Purity Improvement

• Even with a selective source,

SPIRAL1 Beam Purity Improvement (Presentation P. Bertrand and A. Savalle : THM1CIO01)

- Even with a selective source, the exotic beam might be polluted (18F, 140 ...)
- Purification SPIRAL choices:
 - Stripping
 - Energy loss in degrader
 - Vertical deflector for variable frequency

GANIL: HISTORY

- The first beam of GANIL was sent to an experimental room in 1983.
- Since then, the variety and intensity of the ion beams available always increased.
- Progress in the source domain make possible to potentially transport of kW beams.
- The cyclotrons and the beamlines had to be upgraded to handle such a new constraint.

SPIRAL: HISTORY

- In 2001, the first exotic beam of SPIRAL1 was produced with the existing cyclotron used as a driver.
- The exotic ion production was then depending on the target power resistance and the increase of the primary beam power.
- This leading to the developments of 3 kW target of SPIRAL1 and meanwhile increase the primary beam power within the safety rules (<6kW).</p>

GANIL-SPIRAL: Looking towards the Future

Laboratoire commun CEA/DSM SOI CA CNR5/IN2P3

- The variety of the ion species is now the main concern at GANIL. The present selective ECR ion source should be replaced by an alternative one in order to reach metallic beams.
- The great care given to the maintenance of the 27 year old machine allows us to still expect to increase its performances and be competitive until the SPIRAL2 arrival.

GANIL/SPIRAL1/SPIRAL2 facility

GANIL potentiality

44 weeks for SPIRAL2 and 36 weeks for GANIL a year are foreseen

SPIRAL 2			Jan.			Feb.			March			April			Мау			June			July				Aug.			Sept.			Oct	t.		No	<i>.</i> v.		Dec.				
LI	NAG																																	\square					Π		
Maintenance																																				\Box			\Box		
	AEL															Π																	Τ						Π		
	OTHER TARGETS							Π																									Т	Π		\square		Τ	Π		
	Ucx target															Π																		Π				Τ	Π		
		GANIL exp. area																										Τ			Т		Γ	Π	Т	Π			Π	Π	
		DESIR						Π				Π																Τ				Π	Τ	Π	Τ				Π	Π	
G	ANIL/SPIRAL 1																																								
G	ANIL																																								
Μ	aintenance																																						\Box		
	GANIL EXPERIMENTAL AREA	A						Π																									Τ		Τ	\Box			Π	Π	
	CASEMATE SPIRAL1																		Γ									Τ										Τ	Π	Π	
		GANIL exp. area																	Τ														Т			\square		Т	Π		
		LIRAT or DESIR														Π			Τ														Γ					Τ	Π		
	CSS1 solo																																	\square							
	SME			Τ												Π												Τ						Π				T			
	IRRSUD																																						\Box		

Thank you for your attention