LBNL 88" Cyclotron Operations

Status of the 88-Inch Cyclotron High-Voltage upgrade project

September 6, 2010

Ken Yoshiki Franzen

Introduction

- Cyclotron beam intensity...
 - critical for some users (e.g. superheavy element studies)
 - for others not really important (e.g. chip testing)... but they often want switch beam quickly
- Limited by injection beam line transmission between ion sources and cyclotron
 - E.g. ⁴⁰Ar⁹⁺, V_{source}=12.5 kV, 150 μ A at FCL2

- Total transmission $T = 0.70 \times 0.74 \times 0.17 = 9\%$
- Gets worse at higher beam currents....

Goal of HV-upgrade

- Transport efficiency limited by spacecharge effects
 - It helps to extract at higher voltage from ion source.
- Goal of HV-upgrade is to increase injection energy of key ion beams in the mid-range (20<A<136), in particular for ⁴⁸Ca and ⁵⁰Ti...
 - ... without impacting performance for other cases.
- Target injection voltage is 25 kV (if feasible up to 30 kV) which should provide user with an improvement >2.

So what is stopping us?

4

Mirror inflector pros and cons

Pros

- . Versatile
- . Straightforward
- Easy to model

Cons

- . Needs high voltage but current one does not go up to more than ${\sim}15\ kV$
- Output beam center of curvature too far from cyclotron center at high energies
- . Grid degradation (sputtering)

Use spiral inflector for high-intensity runs

Pros

- 100 % transmission
- Lower voltage → Can do HV injection
- Injected beam more centered

Cons

- Narrow operational range
- Causes emittance growth due to fringe field effects
- Difficult to manufacture
- Difficult to model

Preliminary Design of Spiral Inflector and Cyclotron Center Region Electrodes

- Based on extensive 3D FEA modeling
 - Iterative process
- Major challenges are
 - Geometrical constraints
 - High injection energy
 - Compatibility with mirror mode operation

Spiral inflector modeling procedure

- 1. Create FEA 3D model of a general spiral inflector based on an analytical single particle model.
- 2. Define potentials applied to all bodies and calculate electric fields in 3D.
- 3. Track beam through electric fields with a superimposed magnetic field.

Cyclotron modeling procedure

- 1. Use a code from MSU (Z3CYCLONE) to track the beam from the center region all the way out to extraction.
- 2. Calculate the performance of each design in terms of transmission and energy.

Center Region Positional Mechanism Modeling and Testing

- The platform supporting the spiral inflector needs to be positioned differently than for the mirror inflector.
 - Requirement is to swap within two hours between systems
- Will use existing mechanism which is presently being tested during a five week shutdown.
 - Has not been used for many years.

Shaft design

Work in progress...

- Mechanism was tested before removal.
- Changing gaskets and servicing gears.
- Cyclotron back on-line September 21.

Project Schedule

Phase	Description	Start	Finish	DOE Milestones	Comments
1	Requirement Analysis	Aug 2009	Sep 2009	Sep 2009	Done
2	Preliminary Design	Sep 2009	Jun 2010	Dec 2010	In progress. Exit review required.
3	Design	Apr 2010	Nov 2010	May 2011	Exit review required.
4	Manufacturing	Nov 2010	Mar 2011	May 2012	
5	Installation	Mar 2011	May 2011	Jul 2013	In parallel with Ops
6	Testing	May 2011	Jan 2012	Sep 2013	During shutdowns
7	Operation	Jan 2012			

Conclusion

- HV injection upgrade project is on track.
- Design close to being finished.
- Test and service of mechanism for positioning of new inflector close to being finished.
- Initial Operation targeted for early 2012.