



# **IMP Cyclotron Status and Development**

### **Hongwei Zhao**, Bin Wang, Mingtao Song, Youjin Yuan, Yiping Yang, Huanfeng Hao and HIRFL team

#### Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou, 730000, China

# Outline

• HIRFL-Cyclotron Operation Status

• HIRFL-Cyclotron Development

• SECRAL Status and Development



# **HIRFL Layout**

- ECR Ion Source
- SFC K=69--10AMev
- SSC K=450 –100AMev

 •CSRm: Synchrotron Intensity: 10<sup>8-9</sup> pps, Circumference: 162 m
• CSRe: Storage ring

> Accel. & Deccel. Intensity: 10<sup>8-10</sup> pps Circumference: 128 m RIB, internal target High Resolution Spectrometer

• CSR budget:42 M\$; 2000-2007

## **HIRFL: Exp. Setups**



## **HIRFL Cyclotrons**



SSC k=450 (1988-)

## **HIRFL Operation Status**

| Year | Total<br>operation time<br>(hours) | Beam time<br>on target<br>(hours) | Percentage of<br>beam time | Percentage of<br>beam tuning | Percentage of equip. failure |
|------|------------------------------------|-----------------------------------|----------------------------|------------------------------|------------------------------|
| 2007 | 7120                               | 5624                              | 79%                        | 10.0%                        | 11%                          |
| 2008 | 6956                               | 4269                              | 75.7%                      | 9.5%                         | 14.8%                        |
| 2009 | 7161                               | 5578                              | 77.8%                      | 11.6%                        | 10.6%                        |

## HIRFL Operation in 2008-2009

#### HIRFL operation time distribution in Sept.2008-July 2009

| Operation time distribution | Time (hours) | Percentage |
|-----------------------------|--------------|------------|
| Total operation time        | 6922         | 100%       |
| Beam time                   | 5218         | 75.4%      |
| Preparation of beams        | 931          | 13.4%      |
| Failure of equipments       | 773          | 11.2%      |

#### HIRFL beam time distribution in 2008-2009

| Beam time distribution                 | Time (hours) | Percentage |
|----------------------------------------|--------------|------------|
| Total beam time                        | 5218         | 100%       |
| Nuclear physics, material science      | 2730         | 53.2%      |
| <b>Biophysics and therapy research</b> | 1205         | 23.1%      |
| Machine study and improvement          | 1283         | 23.7%      |

5218 hours beam time: 50.5% beam delivered by CSR, the others by SFC or SSC

#### **Beam intensity enhancement at HIRFL-Cyclotrons**

# Maximum operational beam intensities from SFC achieved in recent years and compared with those before 2004

| SFC                            | C<br>6-8 Mev/u | 0<br>6-8 Mev/u | Ne<br>6-8 Mev/u | Ar<br>2-3 MeV/u | Xe<br>2-3 MeV/u |
|--------------------------------|----------------|----------------|-----------------|-----------------|-----------------|
| Beam intensity before 2004     | 5 еµА          | 5.5 еµА        | 3.7 еµА         | 3.2 еµА         | 0.54 еµА        |
| Beam intensity in recent years | 12 еµА         | 13 еµА         | 14 еµА          | 15 еµА          | 6 еµА           |

Maximum operational beam intensities from SSC achieved in recent years and compared with those before 2004

| SSC                            | C<br>80 MeV/u | Ne<br>70 Mev/u | Ar<br>22—<br>25MeV/u | Xe<br>15—20 MeV/u |
|--------------------------------|---------------|----------------|----------------------|-------------------|
| Beam intensity<br>before 2004  | 0.2 еµА       | 0.15 еµА       | 0.15 еµА             | 0.01eµA           |
| Beam intensity in recent years | 0.5 еµА       | 0.6 еµА        | 3.5 еµА              | 0.7 еµА           |

#### Typical beams provided by SFC and SSC in recent years

- 1. SSC beam intensities are still very low and need to be improved.
- 2. Beam long-term stability need to be improved.

|                                                                                                                                                                        | E (Me\                                                         | //A)                                                            | Beam                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Ion Beams                                                                                                                                                              | SFC                                                            | SSC                                                             | Intensity<br>(eµA)                                                                               |
| <sup>129</sup> Xe <sup>27+</sup>                                                                                                                                       | 3.0                                                            | /                                                               | 5.0-6.0                                                                                          |
| <sup>208</sup> Pb <sup>27+</sup>                                                                                                                                       | 1.1                                                            | /                                                               | 0.8-1.0                                                                                          |
| <sup>40</sup> Ca <sup>12+</sup>                                                                                                                                        | 5.8                                                            | /                                                               | 1.0                                                                                              |
| <sup>20</sup> Ne <sup>7+</sup>                                                                                                                                         | 7.2                                                            | /                                                               | 10-12                                                                                            |
| <sup>12</sup> C <sup>4+</sup>                                                                                                                                          | 7.0                                                            | /                                                               | 10-15                                                                                            |
| <sup>26</sup> Mg <sup>8+</sup>                                                                                                                                         | 6.54                                                           | 1                                                               | 2.0                                                                                              |
| <sup>16</sup> <b>O</b> <sup>6+</sup>                                                                                                                                   | 7.99                                                           | 1                                                               | 6-12                                                                                             |
| <sup>40</sup> Ar <sup>8+</sup>                                                                                                                                         | 2.35                                                           | /                                                               | 6-15                                                                                             |
| <sup>78</sup> Kr <sup>19+</sup>                                                                                                                                        | 4.0                                                            |                                                                 | 7-9                                                                                              |
| 238U26+                                                                                                                                                                | 0.81                                                           | /                                                               | 0.33                                                                                             |
| -                                                                                                                                                                      |                                                                |                                                                 |                                                                                                  |
| <sup>12</sup> <b>C</b> 4+/6+                                                                                                                                           | 7.0                                                            | 80.5                                                            | 0.2-0.5                                                                                          |
| <sup>12</sup> C <sup>4+/6+</sup><br><sup>12</sup> C <sup>5+/6+</sup>                                                                                                   | 7.0<br>8.2                                                     | 80.5<br>100                                                     | 0.2-0.5<br>0.2-0.3                                                                               |
| 12 <b>C</b> 4+/6+<br>12 <b>C</b> 5+/6+<br>32 <b>S</b> 11+/16+                                                                                                          | 7.0<br>8.2<br>7.1                                              | 80.5<br>100<br>82                                               | 0.2-0.5<br>0.2-0.3<br>0.2-0.3                                                                    |
| <sup>12</sup> C <sup>4+/6+</sup><br><sup>12</sup> C <sup>5+/6+</sup><br><sup>32</sup> S <sup>11+/16+</sup><br><sup>26</sup> Mg <sup>8+/12+</sup>                       | 7.0<br>8.2<br>7.1<br>6.17                                      | 80.5<br>100<br>82<br>70                                         | 0.2-0.5<br>0.2-0.3<br>0.2-0.3<br>0.3-0.4                                                         |
| 12C 4+/6+<br>12C 5+/6+<br>32S11+/16+<br>26Mg <sup>8+/12+</sup><br>40Ar <sup>12+/17+</sup>                                                                              | 7.0<br>8.2<br>7.1<br>6.17<br>7.1                               | 80.5<br>100<br>82<br>70<br>82                                   | 0.2-0.5<br>0.2-0.3<br>0.2-0.3<br>0.3-0.4<br>0.1-0.3                                              |
| 12C 4+/6+<br>12C 5+/6+<br>32S11+/16+<br>26Mg <sup>8+/12+</sup><br>40Ar <sup>12+/17+</sup><br>209Bj <sup>31+</sup>                                                      | 7.0<br>8.2<br>7.1<br>6.17<br>7.1<br>0.88                       | 80.5<br>100<br>82<br>70<br>82<br>82<br>9.8                      | 0.2-0.5<br>0.2-0.3<br>0.2-0.3<br>0.3-0.4<br>0.1-0.3<br>0.1-0.3                                   |
| 12C 4+/6+<br>12C 5+/6+<br>32S11+/16+<br>26Mg8+/12+<br>40Ar <sup>12+/17+</sup><br>209Bi <sup>31+</sup><br>22Ne <sup>7+/10+</sup>                                        | 7.0<br>8.2<br>7.1<br>6.17<br>7.1<br>0.88<br>6.17               | 80.5<br>100<br>82<br>70<br>82<br>9.8<br>70                      | 0.2-0.5<br>0.2-0.3<br>0.2-0.3<br>0.3-0.4<br>0.1-0.3<br>0.1-0.3<br>0.2-0.5                        |
| 12C 4+/6+<br>12C 5+/6+<br>32S11+/16+<br>26Mg <sup>8+/12+</sup><br>40Ar <sup>12+/17+</sup><br>209Bj <sup>31+</sup><br>22Ne <sup>7+/10+</sup><br>58Nj <sup>13+/22+</sup> | 7.0     8.2     7.1     6.17     7.1     0.88     6.17     4.5 | 80.5<br>100<br>82<br>70<br>82<br>9.8<br>9.8<br>70<br>50         | 0.2-0.5<br>0.2-0.3<br>0.2-0.3<br>0.3-0.4<br>0.1-0.3<br>0.1-0.3<br>0.2-0.5<br>0.1-0.2             |
| 12C 4+/6+<br>12C 5+/6+<br>32S11+/16+<br>26Mg8+/12+<br>40Ar12+/17+<br>209Bi <sup>31+</sup><br>22Ne <sup>7+/10+</sup><br>58Ni <sup>13+/22+</sup><br>129Xe <sup>27+</sup> | 7.0<br>8.2<br>7.1<br>6.17<br>7.1<br>0.88<br>6.17<br>4.5<br>1.8 | 80.5<br>100<br>82<br>70<br>82<br>9.8<br>9.8<br>70<br>50<br>19.5 | 0.2-0.5<br>0.2-0.3<br>0.2-0.3<br>0.3-0.4<br>0.1-0.3<br>0.1-0.3<br>0.2-0.5<br>0.1-0.2<br>0.3-0.75 |

## Upgrading of HIRFL Cyclotron in the past 10 years

Built a new SFC vacuum chamber

 $\succ$ 

 $\succ$ 

 $\mathbf{\hat{\mathbf{A}}}$ 

- **Built two rebunchers NB1 and NB2 located between SFC and SSC**
- Renovated most of old power supplies of HIRFL system
- Improve rf Dee voltage for SFC and SSC
- Upgrading SFC Axial injection beam line
- Built a new ECRIS and study beam quality from ECRIS
- Developed a new chopper for intense pulsed beam of HIRFL-CSR
- Upgrading Control and diagnostic systems
  - Machine studies to improve beam intensities and stability

#### Gas-phase chemistry with bromides of group 5 elements at HIRFL



Conclusion: experimental data consistent with relativistic self-consistent Dirac -Slater calculation, there are "relativistic effect" on the chemical properties of Db

## **Clinical Treatment for the shallow-seated Tumor therapy**

**103 patients** 

#### Double Cyclotron combination SFC+SSC





**3D** conformal irradiation method



**©**Collaborated with local hospitals

**103** patients treated for ~10 kinds of shallow-seated tumors (SSC)

**68** patients for deep-seated tumors by HIRFL-CSR



| Treatment date    | depth   | Ν  |
|-------------------|---------|----|
| Nov. 2006         | 1.6cm   | 4  |
| Jan.2007          | 2.1 cm  | 9  |
| March 2007        | 2.1 cm  | 14 |
| August 2007       | 2.1 cm  | 9  |
| <b>Dec. 2007</b>  | 2.1 cm  | 15 |
| <b>March 2008</b> | 2.1 cm  | 15 |
| Sept. 2008        | 2.1 cm  | 16 |
| <b>March 2009</b> | 2.1 cm  | 21 |
| April, July 2009  | 3~11 cm | 8  |

## **Local Control Rates Following Treatment of 100 Patients**



**Months after Treatment** 

Squamous cell carcinoma (42-70.4GyE/4-10fr)

- Basal cell carcinoma (54.8-61.2GyE/6-11fr)
- Malignant skin melanoma (61-75GyE/6-7fr)
- **Sarcoma (51-65.7GyE/6-11fr)**

- Other skin lesions (30-60GyE/6-8fr)
- Lymphoma (40-54GyE/6-9fr)
- Adenocarcinoma (40-60GyE/6-9fr)
- Metastatic lymph nodes of carcinomas (40-70GyE/6-11fr)

Int J Mol Med, 2008,22(suppl.) :186

# HIRFL-Cyclotron Development

# Rebunchers NB1 and NB2

#### Main parameters

| Frequency           | $22{\sim}54$ MHz      |
|---------------------|-----------------------|
| Peak voltage        | 150 kV                |
| RF power            | 40 kW                 |
| Phase stability     | ± <b>0.7</b>          |
| Amplitude stability | 1×10 <sup>-3</sup>    |
| Frequency stability | 5×10-6                |
| Vacuu pressure      | 1×10 <sup>-5</sup> Pa |

Buncher cavity structure:  $\lambda / 4$  coaxial resonator + double-gap drift tube



# **NB1 and NB2**





## NB1+NB2



## **Isochronous Field Optimization at SSC**



Isochronous field optimization at SSC has been conducted successfully. And has been used in beam tuning. But it has not yet become a routine tool in operation because of control system.





Beam: 25 MeV/u <sup>40</sup>Ar<sup>15+</sup>

# **SSC-LINAC**



# **SSC-LINAC** Main Parameters

| SSC rf requency                  | 13.417 MHz                    |
|----------------------------------|-------------------------------|
| RFQ /DTL/QWR frequency           | 53.667/ <mark>80.5 MHz</mark> |
| A/Q                              | 7                             |
| Extraction voltage of ion source | 26 kV                         |
| Emittance (90%nomalized)         | 0.6                           |
| Input Energy of RFQ              | 35 KeV/u                      |
| Output energy 1 (SHE)            | 0.576 MeV/u                   |
| Output energy 2 (CSR injection)  | 1.020 MeV/u                   |
| Duty factor                      | 100%                          |



# Expected beam intensity extracted from LINAC+SSC

|           | Energy<br>MeV/u | ion                              | Intensity of<br>ion source | Expected | intensity |
|-----------|-----------------|----------------------------------|----------------------------|----------|-----------|
|           |                 |                                  | euA                        | puA      | pps(E12)  |
| LINAC+SSC | 5.9             | <sup>48</sup> Ca <sup>7+</sup>   | 120                        | 0.8-2.0  | 5-12      |
| LINAC+SSC | 5.9             | <sup>64</sup> Ni <sup>10+</sup>  | 100                        | 0.8-1.5  | 3.1-9.3   |
| LINAC+SSC | 5.9             | <sup>70</sup> Zn <sup>10+</sup>  | 100                        | 0.8-1.5  | 3.1-9.3   |
|           |                 |                                  | euA                        | euA      | puA       |
| LINAC+SSC | 10              | <sup>86</sup> Kr <sup>14+</sup>  | 100                        | 6-18     | 0.45-1.3  |
| LINAC+SSC | 10              | <sup>136</sup> Xe <sup>22+</sup> | 160                        | 9.5-28   | 0.48-1.4  |
| LINAC+SSC | 10              | <sup>238</sup> U <sup>37+</sup>  | 30                         | 1.7-5.2  | 0.05-0.15 |

## **SECRAL Status and Operation at HIRFL-Cyclotron**



#### SECRAL with 24GHz/7kW Gyrotron System



### Beam Stability at 24GHz/3-5 kW





Beam long-term stability at 24GHz/3-5 KW is not as good as that at 18GHz/3kW. Reasons need to be studied.

#### **Beam quality study at SECRAL**

#### Use M. Stockli's code to process data





IMP Allison-type emittance scanner. Located after the analyzing magnet





#### Emittance/Brightness VS RF power, bias voltage, solenoid lens current at 18GHz



#### **Emittance/Brightness VS magnetic fields at 18GHz**



#### **SECRAL Operation for HIRFL Accelerator Since May 2007**

SECRAL is dedicated only for operation of highly charged heavy ion beams.

HIRFL Accelerator Complex At IMP lanzhou



### **SECRAL Operation for HIRFL Accelerator**

Beams operated for HIRFL accelerator: <sup>209</sup>Bi<sup>31+</sup>, <sup>129</sup>Xe<sup>27+</sup>, <sup>78</sup>Kr<sup>19+</sup>, <sup>58</sup>Ni<sup>19+</sup> At 18GHz, typical rf power 1.0-2.0 kW, extraction voltage 10-22kV Beam intensity during operation: 100-150 eµA for Xe, Kr, 50-70 eµA for, Bi<sup>31+</sup>, Ni<sup>19+</sup>(9.8kV)

One month continuous operation, <sup>78</sup>Kr<sup>19+</sup> in Oct.09 and <sup>209</sup>Bi<sup>31+</sup> in Jul. 10

Total beam time from SECRAL for HIRFL: >3500 h

With  $^{78}\text{Kr}$  beams at CSRe, 9 new nuclides ( $^{63}\text{Ge},^{65}\text{As},^{67}\text{Se...}$ ) were identified firstly in the world with  $\Delta m/m=10^{-6}$ 

#### **Beam intensity enhancement at HIRFL-Cyclotrons by SECRAL**

# Maximum operational beam intensities from SFC achieved with SECRAL and compared with those with LECR2-3

| SFC                         | Kr                | Xe                | Bi                |
|-----------------------------|-------------------|-------------------|-------------------|
|                             | 2-4 MeV/u         | 2-3 MeV/u         | <1 MeV/u          |
| Beam intensity with LECR2-3 | Kr <sup>17+</sup> | Хе <sup>26+</sup> | Not               |
|                             | 2-3 eμA           | 0.54 еµА          | available         |
| Beam intensity              | Kr <sup>19+</sup> | Хе <sup>27+</sup> | Bi <sup>31+</sup> |
| with SECRAL                 | 7-10 еµА          | 5-6 еµА           | 5-6 еµА           |

Maximum operational beam intensities from SSC achieved with SECRAL and compared with those with LECR2-3

| SSC                           | Xe<br>15-20 MeV/u                | Bi<br>9.8 MeV/u                  |
|-------------------------------|----------------------------------|----------------------------------|
| Beam intensity with LECR2-3   | Хе <sup>26+</sup><br>0.01 еµА    | Not available                    |
| Beam intensity with<br>SECRAL | Хе <sup>27+</sup><br>0.6-0.7 еµА | Ві <sup>31+</sup><br>0.1-0.3 еµА |

### **Problems of SECRAL operation for HIRFL** accelerator

- Low extraction voltage (<15kV for high Q heavy ions)
- Cyclotron beam very sensitive to the plasma conditions due to variations of beam extraction, emittance and image.
- Need to refill LHe if the additional cryostat is not operated normally
- Control board of the CPI 18GHz rf generator sometimes broken if there is spark
- The long term stability of beam <sup>209</sup>Bi<sup>31+</sup> and <sup>129</sup>Xe<sup>27+</sup> is not as good as that of last year due to micro-leakage at the extraction insulator and one cooling tube in the injection component.

## **SECRAL Status**

Now almost all record beam intensities are produced by SECRAL and VENUS

- SECRAL was tested at 24GHz and results are promising. Beam test at 24GHz has not been conducted since last November due to failure of the gyrotron power supply system.
- Beam time from SECRAL for HIRFL accelerator has been more than 3500 h at 18GHz operation. But beam quality and long-term stability at high RF power、 high intensity need to be studied carefully.
- SECRAL beam test and operation at 24GHz will continue and better results should be coming up. U beam test will be conducted with a new HT oven. A new SC-ECRIS is under design at IMP.

|                        |     | SECRAL  | SECRAL | VENUS                     |
|------------------------|-----|---------|--------|---------------------------|
|                        | Q   | 18 GHz  | 24GHz  | 28 GHz                    |
|                        |     | <3.2 kW | 3-5kW  | 5-9kW                     |
|                        |     | μA      | μA     | μA                        |
| <sup>16</sup> <b>O</b> | 6+  | 2300    |        | 2860                      |
|                        | 7+  | 810     |        | 850                       |
| <sup>40</sup> Ar       | 12+ | 510     | 650    | 860                       |
|                        | 14+ | 270     | 440    | 514                       |
|                        | 16+ | 73      | 149    | 270                       |
|                        | 17+ | 8.5     | 14     | 36                        |
| <sup>129</sup> Xe      | 20+ | 505     |        |                           |
|                        | 27+ | 306     | 455    | 411                       |
|                        | 30+ | 101     | 152    | 211                       |
|                        | 31+ | 68      | 85     |                           |
|                        | 34+ | 21      | 60     | 40                        |
|                        | 35+ | 16      | 45     | 38                        |
|                        | 38  |         | 17     | 7                         |
|                        | 42+ | 1.5     | 3      | 0.5                       |
|                        | 43+ | 1       |        |                           |
| <sup>209</sup> Bi      | 28+ | 214     |        | 240                       |
|                        | 30+ | 191     |        | 225                       |
|                        | 41+ | 22      |        | 15                        |
|                        | 44+ | 15      |        | 7.7                       |
|                        | 48+ | 4.2     |        | <b>1</b> <sub>34</sub> .4 |
|                        | 50+ | 1.5     |        | 0.5                       |

# Conclusion

- HIRFL cyclotrons have delivered more than 5000 hours beams each year and beam intensities have been enhanced a lot in the past years. However, the main cyclotron SSC typical beam intensity for high energy and heavy ion is still quite low. Further research and upgrading are underway.
- To improve beam intensity from SSC, a small linac is being constructed as an independent injector for SSC.
- SECRAL SC-ECRIS has produced many record beam intensities and has been operated at 18GHz to deliver more than 3500 hours beams for HIRFL cyclotrons. Beam emittance and long-term beam stability should be studied carefully.

# Thank you for your attention!