

Intense Beam Operation of the MSU/NSCL Cyclotrons*

J. Stetson, G. Machicoane, F. Marti, D. Poe, NSCL/MSU

* Work supported under NSF Grant PHY0606007

Cyclotrons+A1900+Experimental Areas

Cyclotrons + A1900

Our "Real" Beam List ~ 1000 Entries

more than 1000 RIBs have been produced (2001-2010) more than 830 have been used in experiments

Superconducting Compact Cyclotron Driver(?)

Fraction of Operating Hours by Accelerated Ion Type

Demand Influences Development

5 Beams account for $\sim \frac{1}{2}$ the total running time

4 - 7 Day duration runs \rightarrow Limited Time for "Perfect Tunes"

Cyclotron Beam Intensities - 2010

not Peak values
 not Guaranteed values

On this list: P(max) = 1200 WP(max) = 1 W

Power or Loss-Limited Beams (400 – 1200W)

ION	Energy	Intensity	Power
	(MeV/u)	(pnA)	(W)
16-0	150	500	1200
18-0	120	500	1080
22-Ne	150	220	726
24-Mg	170	200	816
36-Ar	150	150	810
40-Ar	140	200	1120
48-Ca	140	140	941
78-Kr	150	100	1170
86-Kr	140	70	843
124-Xe	140	25	434

Danger Zone: > 1000 W (light) To > 300 W (heavy)

Range in Tungsten (Deflector Septum)

ION	Energy	Range in	
	(MeV/u)	Tungsten (mm)	
16-0	150	4.1	
18-0	120	3.2	~ Factor of 6
22-Ne	150	3.6	
24-Mg	170	3.4	
36-Ar	150	1.8	Deposited
40-Ar	140	1.8	Energy Density
48-Ca	140	1.8	per
78-Kr	150	1.0	Watt
86-Kr	140	1.0	
124-Xe	140	0.7 🖌	

Special Cases: Production Target (Be) Damage

ION	Energy (MeV/u)	Intensity (pnA)	Power (W)	Medium-heavy beams
16-0	150	500	1200	at ~ 1 kW
18-0	120	500	1080	causes damage
22-Ne	150	220	726	within the 1 mm dia.
24-Mg	170	200	816	impact region
36-Ar	150	150	810	
40-Ar	140	200	1120	ے لے
48-Ca	140	140	941	
78-Kr	150	100	1170	Rotating Wheel Target
86-Kr	140	70	843	being developed
124-Xe	140	25	434	

Source-Output-Limited Beams (Ni, Zr, Sn)

ION	Energy	Intensity	Power
	(MeV/u)	(pnA)	(W)
58-Ni	160	40	371
64-Ni	140	15	134
96-Zr	120	3	37
112-Sn	120	10	120
118-Sn	120	3	38
124-Sn	120	3	44

(However for all Beams, Higher Brightness is a plus)

Foil-Limited Beam Intensities

ION	Energy	Intensity	Power
	(MeV/u)	(pnA)	(W)
208-Pb	85	2	36
209-Bi	80	2	34
238-U	80	.3	6
238-U	45	.1	1

Foil Degradation with 600 enA ²³⁸U³⁰⁺ (7.7 MeV/u) after 15 seconds!

NSCL Stripper Foil Experience

Progress since Cyclotrons07

		2006/	/2007			2009/	2010	
	¹⁶ O	⁴⁸ Ca	⁷⁸ Kr	¹²⁴ Xe	¹⁶ O	⁴⁸ Ca	⁷⁸ Kr	¹²⁴ Xe
Final (MeV/u)	150	140	150	140	150	140	150	140
Beam Power (W)	1500	1000	1000	400	1500	1000	1000	400
K500 out / K500 in	21%	37%	15%	28%	50%	51%	36%	43%
K500 Defl. Loss	113 W	78 W	180 W	79 W	106 W	37 W	68 W	36 W
K1200 out / K1200 in	34%	63%	49%	53%	66%	66%	61%	57%
K1200 Defl. Loss	484 W	111 W	380 W	110 W	290 W	140 W	112 W	88 W
K1200 out / K500 in	6%	22%	6%	14%	20%	33%	30%	25%

(Normalized by beam to the same final output power)

Progress since Cyclotrons07

		2006/	/2007				2009/	2010	
	¹⁶ O	⁴⁸ Ca	⁷⁸ Kr	¹²⁴ Xe	-	¹⁶ O	⁴⁸ Ca	⁷⁸ Kr	¹²⁴ Xe
Final (MeV/u)	150	140	150	140	•	150	140	150	140
Beam Power (W)	1500	1000	1000	400		1500	1000	1000	400
K500 out / K500 in	21%	37%	15%	28%	*	50%	51%	36%	43%
K500 Defl. Loss	113 W	78 W	180 W	79 W		106 W	37 W	68 W	36 W
K1200 out / K1200 in	34%	63%	49%	53%		66%	66%	61%	57%
K1200 Defl. Loss	484 W	111 W	380 W	110 W		290 W	140 W	112 W	88 W
K1200 out / K500 in	6%	22%	6%	14%		20%	33%	30%	25%

(Normalized by beam to the same final output power)

Progress since Cyclotrons07

		_
200)6/2()07
200	0/20	01

2009/2010

	¹⁶ O	⁴⁸ Ca	⁷⁸ Kr	¹²⁴ Xe	¹⁶ O	⁴⁸ Ca	⁷⁸ Kr	¹²⁴ Xe
Final (MeV/u)	150	140	150	140	150	140	150	140
Beam Power (W)	1500	1000	1000	400	1500	1000	1000	400
K500 out / K500 in	21%	37%	15%	28%	50%	51%	36%	43%
K500 Defl. Loss	113 W	78 W	180 W	79 W	106 W	37 W	68 W	36 W
K1200 out / K1200 in	34%	63%	49%	53%	66%	66%	61%	57%
K1200 Defl. Loss	484 W	111 W	380 W	110 W	290 W	140 W	112 W	88 W
K1200 out / K500 in	6%	22%	6%	14%	20%	33%	30%	25%

(Normalized by beam to the same final output power)

Stripping Efficiencies of K1200 Foil

K1200 Transmission percentages are given with the stripping efficiency normalized to 100% to allow comparison between beams of different ions.

Stripping Efficiencies are measured for each beam, foil thickness, and foil type with a test setup in the K500 to K1200 coupling line.

Measured Stripping for 600 ugm/cm² Carbon

	¹⁶ O	⁴⁸ Ca	⁷⁸ Kr	¹²⁴ Xe	238U
$Q1 \rightarrow Q2$	$3+ \rightarrow 8+$	8+ → 20+	14+ → 34+	19+ → 45+	30+ →
Efficiency	95%	69%	53%	26%	9%

(Foil Holder)

Intense Beam Operation of the MSU/NSCL Cyclotrons

Not Very??

1.2 kW of 140 MeV/u ⁴⁸Ca vs. Stainless Steel

Thickness of Vacuum Chamber wall = 9.5 mm

Range of 140 MeV/u 48 Ca in steel = 3.1 mm

From the Operations Log: "It is possible, but not likely, that this vacuum event was not related to the beam, but this operator doubts it."

Beam Wins

Event Duration < 20 sec

Range/Energy (re-)Defines "Intense"

	MeV/u	Power	Range in Steel
Proton	590	1 MW	275 mm
⁴⁸ Ca	140	1 kW	3 mm

(Material Damage effects are also more severe with increasing ion mass.)

These beams must be tuned and run *cautiously*

Deflectors are a Major Concern

Short Range of Heavy Ions In Materials Full Radius Turn Separation (beam center-to-center): K500 ~ 1.3 mm K1200 ~ 0.65 mm

~ 100 kV/cm electric Field In Deflectors

Key #1: O₂ Gas Flow during Operation

S NSCL

O₂ Gas Flow, Beam Off

Main Time Axis (EST)

O₂ Gas Flow, Beam Off

Flow lowered to more-normal value \rightarrow Current trends up

"High Pressure Treatment": Beam & RF Off

Deflector voltage set high, but gets into a low volts/high current (corona?) Discharge

"High Pressure Treatment": Beam & RF Off

Main Time Axis (EST)

Normal Operation Resumed: Time Lost = 20 minutes

Main Time Axis (EST)

Key #1: O₂ Gas Flow during Operation

Allows Recovery of normal Deflector function *Without* venting/removal/cleaning

How this works = ?

May be similar to

"Oxygen Plasma Cleaning"

"Oxygen Plasma Cleaning"

Gives

131,000 Google Hits

Useful Aside: Event Reconstruction

Key #2: Low Emittance Injection

Year	16-Oxygen On K500 Inflector (euA)	Extracted Beam (euA)
2002	100	1.1
2006	5.0	1.1
2010	2.1	1.1

Better transmission through the cyclotron = Many fewer problems

"Don't inject what won't extract" Not easy with ECRIS Beams

The Beam characteristics from ECRIS's are a poor match for injection Into Accelerators

NSCL Image of ¹⁶O³⁺ Presented Tokyo 2004

Good Emittance can be Achieved (and it's vital to do so)

For NSCL Artemis ECRIS techniques see in particular: J. W. Stetson, NSCL, *Proceedings of ECRIS08*, Chicago, IL, USA (JACoW, 2009), THCO-A03, p. 189.

> For NSCL SUSI ECRIS techniques see: G. Machicoane, NSCL, this conference!

ECRIS beam quality is an active area of investigation at every Heavy-Ion Beam Lab, so there are *many* other important references now available

Injection Conditions for Intense NSCL Beams

1) Beam Emittance $< 20 \pi$ mm*mr (rms) (best $< 10 \pi$ mm*mr) @ 18-27 kV*q keV with Intensity of $10 - 20 e \mu$ A

2) Minimal Beam "Tails"

3) Medium charge state ($\sim 5 < M/Q > \sim 8$)

$({}^{40}\text{Ar}{}^{7+} \sim 10 \text{ e }\mu \text{ A}$ 4 $\pi \text{ mm*mr rms})$

High Emittance Spreads Bunched Phase width thru K500 Inflector

F. Marti, IEEE Trans. On Nucl. Sci., vol. NS-32, No. 5, Oct. 1985

Key #3: Scraper / Collimator

Perfect ⁴⁰Ar⁷⁺Beam = No Scraper Losses

K500 Radial Probe Trace

"Unclean" Injection ²⁰⁸Pb²⁷⁺ = Losses

K500 Radial Probe Trace

The low output of ²⁰⁸Pb from Artemis Limited collimation in the Injection Line → high emittance

Key #3: Scraper / Collimator (K1200)

K1200 Radial Probe Traces

Off-Center Beam is Cut by the Collimator:

- 1) Decouples the effect of centering and extraction "bumps"
- 2) Reduces losses on the Deflector
- 3) K1200: deteriorating Foil \rightarrow higher collimator losses

Source Monitoring & Tuning Using FFT

ECRIS Beam is not Pure DC

Look at a signal taken directly from a Faraday cup or a Wire inserted into the beam path using an FFT-analyzing oscilloscope

19:41:00

⁴⁰Ar⁷⁺: Microwave power = 310 W

⁴⁰Ar⁷⁺: Microwave power = 315 W

Importance? "Mode" Influences Injection

Importance? "Mode" Influences Injection

Some <u>very</u> provisional comments:

Wide Foil vs. Narrow Foil $({}^{16}O^{3+} \rightarrow {}^{8+})$ (*lightish ions are not fully stopped by the probe at high energy*)

K1200 Deflector Heating by Unstripped Beam

¹⁶O³⁺ Injected Beam Path

Beam that is Not stripped Hits dee edge Strip ~ harmless

K1200 Deflector Heating by Unstripped Beam

Beam that is Not stripped hits Deflector: BAD!

 124 Xe¹⁹⁺ Injected Beam Power = 400 W

Summary

- Intensities for many beams ~ 800 1000 W
- ECRIS intensity increases (SUSI) \rightarrow more power-limited beams
- Gradual improvement toward 2000 W (?)
- Experimental Demand is for *much higher* beam power

Ultimate Upgrade: FRIB Coming ~2018(?)

Bent Linear Accelerator: **BLINAC**

Logical Progression: Separated-Sector *Linear* Cyclotron: SSLC

The Cast

Thanks to: •Peter Spaedtke, GSI •Stefan Adam, PSI ION SOURCE
Dallas Cole
Larry Tobos
Tommi Ropponen
Liangting Sun

Top View: Compact Machines (K1200 Extraction Radius = 1 m)

"Magnetic" Phase Compression

 (1) Inject with phase error, (2) Bring back to 0 deg Result: Increasing energy gain/turn
 - Phase Compression -

A. Chabert, IEEE Trans. On Nucl. Sci., vol. NS-28, No. 3, June 1981

Exhibit A: K1200 Deflector Septum (Tungsten)

(The only such damage noted in the 2007-2010 time period and did not interrupt Beam delivery)

ECRIS Beam Characteristics

- 1) Transverse Structure
- 2) Large 2nd Order Aberrations (Triangle)
- 3) Strong Phase space cross-coupling (beam is correlated)
- 4) Focusing morphs Triangle into Star
- 5) Under some conditions, a fractal nature (round cut can redevelop into a triangle-star)

Injection Line (~16.5 m) to K500

Emittance for 100% Extraction Example

Key #1: O₂ Gas Flow during Operation

Beam Time Lost = 20 minutes