

Medical Cyclotron and Development in China

Two directions:

Lower ennergy machine: isotope production

Higher energy machine: tumour therapy

The First Medical Cyclotron in China (CYCIAE-30)

Beam time of

theCYCIAE-30

Constructed by China Institute of Atomic Energy (CIAE) in 1995

Used for accelerated Mass production of isotope

CYCIAE-CRM cyclotron

This is the main part of a high intensity cyclotron experimental platform (CYCIAE-CRM)

Parameters	Value
Accelerated particle	H.
Extraction energy	10Mev
Internal beam intensity	430µA

It can be used for the developing of PET-cyclotrons which be used for diagnose of cancer and other diseases.

CYCIAE-14

Top Yoke Ion Source and	Vacuum Main	Parameter	value
Stripper		Particle accelerated	H-
Target	P Extraction	Final energy	14.6MeV
	Main Coil	Bmin/Bmax	2.0kGs/18.5kGs
	Pole	Radius of sector magnet	500mm
Beam Extraction		Sector angle	520
ER H.	Elevating System	Hill gap	23-26mm
		Valley gap	318mm
Bottom RF Cavity Vacuum Yoke Pump	Support Return Yoke	Outer radius of magnet	880mm
		Height of Magnet	1066mm
It can product not only	the normal	Dee Voltage	50kV
PET particles 11C 15	0、13N、	RF frequency	73.02MHz
18F but also the isotop	es 64Cu、	Harmonic mode	4
124I、99mTc		Extracted particle	Proton

Layout of HIRFL

Basic researches on biomedical related to heavy ion irradiation (1)

The cell injure induced by heavy-ions and their corresponding mechanisms

Basic researches on biomedical related to heavy ion irradiation(2)

The affections of heavy-ion irradiations on procreating cells and genetics.

The affections of heavy-ion irradiations on the immunity system of mice, conservation of antioxidant of injure induced by heavy ions.

Affections of heavy-ion irradiations on procreating cells and genetics

Basic researches on heavy-ion tumour therapy(1)

siRNA techniques adopted in heavy-ion tumour therapy researches

Basic researches on heavy-ion tumour therapy(2)

The protein group method adopted in heavy-ion tumour therapy researches

radiation

X-ray

carbon

ionbeam

f-test

SF2

0.463

±

0.181

±

0.032 ⊳<0.05 OTM2

 $2.867 \pm$

0.492

15.833

 ± 3.826

p<0.01

The affection of heavy ion irradiation in mammal cell DNA repair

The affection of heavy ion irradiation in mammal cell DNA injure

Dose (C

X-rays tail mome

Dose (Gy

tays had DN

Dose (Gy

The protein group method in ion irradiation cancer biomedical

Practice of tumour therapy at IMP

Up to now, there are 103 patients who has a superficial tumour had been treated at IMP

Squamous cell carcinoma
 Basal cell carcinoma
 Malignant skin melanoma
 Sarcoma

- Other skin lesions
 Lymphoma
 Adenocarcinoma
- Metastatic lymph nodes of carcinomas

Some typical patient

Cyclotron as a synchrotron injector

Now IMP is designing a cancer therapy machine, it consists a injector cyclotron and a main accelerator synchrotron

Accelerated Ion Species	¹² C ⁶⁺
Extraction Energy	7Mev/u
Ex-Beam Intensity (C)	10euA
Energy Spread	±1%
Emittance	20-25 π mm.mrad
Frequency	31.02MHz
Accelerating Voltage	70KV
Degree of Dees	30°
Dee Number	2
Stability of Phase	±1°
Stability of Voltage	\pm 5 $ imes$ 10-4/24hour
Stability of Frequency	\pm 1×10-6/24hour
Power Source Number	2
Power	50KW

Application of Virtual Prototyping in Cyclotron Engineering

Virtual Prototyping (VP)

- A digital design method based on computer models of the product
- Combines different development models in various engineering area
- Simulates the real product from the structures, functionalities and behaviors.

Answer fundamental engineering questions:

- □ What is the best design?
- \Box How safe is it?
- □ How much confidence in my answer?

Nanosatellites (New Mexico State Univ. & NASA)

Boeing 777 "the first airplane to be 100% digitally designed and preassembled on computer."

Applications of Virtual Prototyping

Solid propellant rockets

-Gas temperature & pressure (*CSAR,USA*)

Vehicles design: Structure, Motion, Engine

Applying VP to the Innovative Design of Compact Cyclotrons

Motivations...

- Decrease the use of physical prototypes
- Reduce time, cost and risk during R&D of cyclotrons

Promote innovative design

Enables...

Fit & Assembly Finite element analysis (electro-magnetic field, stress, thermal etc.) Beam dynamics analysis Style & form Manufacturability Optimization

Collaborative Design in VP

Collaborative Design in VP

Continuous Development During Product Lift Cycle in VP

Continuous Development During Product Lift Cycle in VP

Cyclotron VP Platform (CVPP)

System Architecture

Presen La	yer Augme	ented Reality Environment (Virtual Environment + Experiment	nental System)
Componets Design Layer	Magnet Ca Modeling	vity Injection Extraction Manufacture Design Analysis Distributed Bus	Assemble Maintance
Mana	Management Layer Data warehouse		
Supp	orting Layer	OS, DBMS, Network	

Supporting & Management Layer: Share models & database Component Design Layer: Collaborative design with distributed computing Presentation: Augmented reality

Webonic Implementation of CVPP

Python: a powerful high-level scripting language; very popular in scientific computing

Mixed-programming: integrates heterogeneous design codes written with Fortran/C/C++

VRML Environment for Model Observation

Virtual Assembling

Digital map for real assemble/disassemble process

> Optimize assemble/disassemble path by collision detection

>Training propose

Magnet Design

Considerations during magnet design: Field isochronisms condition during particle acceleration;

$$B_{iso}(r) = \gamma(r) \cdot B_c = (1 + T / E_0) \cdot B_c$$

Enough radial and axial focusing of the beam; Avoid dangerous resonance crossing.

Magnetic field calculation

2D: Poisson/Superfish, OPERA2D 3D: OPERA3D/TOSCA, ANSYS

Iterative Magnet Optimization

3D magnet field calculation is close to the reality with the field error less than 2%. The isochronous field error can be estimated by equilibrium orbit analysis. And the required geometry change of the magnet model is calculated by linear hard edge model.

We developed an automated tool to implement this iterative optimization process of the magnet, with the aid of OPERA-3D and PTP

Magnet design and optimization process

Isochronous Field Optimization

Magnet Structure Analysis

Magnet deformation due to atmosphere pressure, gravity and magnetic force;

Von Mises stress analysis

Stable resonance frequency determined by isochronous magnetic field Relative high quality factor (Q value) Reasonable distribution of Dee voltage

Other problems to be considered: Frequency compensation Effective coupling

Calculation of resonance frequency, Q-value, electric field distribution with FEM code ANSYS & FIT code CST Microwave Studio

Spiral Inflector Design

Fringe electric field compensation, $\chi = 0\%$, $\chi = 5\%$, $\chi = 8\%$

Beam Dynamics – Single Particle

Equilibrium orbit analysis: field error, transversal betatron frequency, local/total phase slip, etc.Particle tracing for injection/extraction/accelerationPTP, CYCCAE, CYCLOP, CYCLONE codes

Space Charge Effect Simulation based on PIC Numerical Method

Using BEM as Poisson solver Object oriented C++ code : PTP-SC

$$\begin{cases} \nabla^{2} u + p = 0 & (in \ \Omega) & E_{x}(x, y) = \frac{1}{2\pi\varepsilon} \iint_{s} \frac{(x_{i} - x)\rho(x_{i}, y_{i})}{(x - x_{i})^{2} + (y - y_{i})^{2}} dS(x, y) \\ u = \overline{u} & (on \ Sv) \\ \frac{\partial u}{\partial n} = q & (on \ Sv) & E_{x}(x, y, z) = \frac{1}{4\pi\varepsilon} \iint_{v} \frac{(x_{i} - x)\rho(x_{i}, y_{i}, z_{i})}{\left[(x - x_{i})^{2} + (y - y_{i})^{2} + (z - z_{i})^{2}\right]^{\frac{3}{2}}} dv(x, y, z) \end{cases}$$

Simulation in Drift Space due to Nonlinear Space Charge Effect

Extreme case for comparison with theoretical result:

parallel proton beam with 1A, 100keV, Rrms=5mm, in 200mm drift space.

Beam density

Space charge

Emmitance

0 0.005 0.01 0.015

rím

n.

0.3

00

n

-0.02 -0.015 -0.01 -0.005

artic

analytical result simulative result

Specifications of CYCHU-10

Adopt internal PIG ion source for compactness and reducing cost Small Valley Gap (SVG) magnet

Magnet		Ion source	
Sector numbers	4	Туре	H ⁻ internal PIG
Hill angle	32~54 degree	Arc voltage	2~3kV
Hill/valley gap	2.5 / 10.0 cm	RF	
Pole radius	33 cm	Frequency	101 MHz
Average field	1.65 T	Dee Number	2
Maximum energy	10 MeV	Dee Angle	31 degree
Extraction radius	27.2 cm	Dee Voltage	35 kV
Acceleration turns	83 turns	Magnet coils	
Weight	11 ton	Ampere-turns	38000 AT
Power supply	14 kW	Current density	2.2 A/mm ²

Magnet

High average magnetic field (>1.6T) due to SVG

Compactness (about 11tons including yoke & coils)

Central Region Considerations

- Relative low beam intensity (about 60uA) suitable for short-lived isotopes production such as ¹⁸F, ¹⁵O
- Internal PIG ion source: without beam manipulation by external injection line, the CR should be carefully designed.

Basic parameters

Parameters	Value
Dee width	31deg.
Dee voltage	35 kV
Harmonic mode	4
RF frequency	101MHz
Injection radius	1.6 cm
Central magnetic field	1.68T

CR – Horizontal Motion

The horizontal RF phase acceptance is about 25 deg., and should be optimized larger than 30 deg.

CR - Vertical Beam Loss

Multi-particle tracing with 4D Gaussian phase space distribution and a KV start RF phase distribution

5% beam loss with the condition: slit size dR=0.8mm, dZ=6mm, $R'_{\rm rms}$, $Z'_{\rm rms} \le 10$ mrad , RF phase width 25 deg.

Vertical beam motion in the first 5 turns with $R_{\rm ms} = 0.4$ mm, $Z_{\rm ms} = 3$ mm, $R'_{\rm ms} = Z'_{\rm ms} = 5$ mrad, $\Delta \phi = 20^{\circ}$

Beam loss rate with different slip aperture size

Magnet Mapping System

Specifications

System specification	Value
X scan capability	1100mm
Y scan capability	1100mm
Mechanical resolution	5 µ m
Range of magnetic field	2.5T
Relative random fluctuation error	0.01%

x/y-axis motor mapping stage hall probe carrier

Cartesian mapping systemAutomatic measurement with fly mode

Conclusion

Medical cyclotron has developed in China for 15 years

- Several cyclotrons are used in medical research and technology
- Many peoples are involved in medical cyclotron accelerator physics and technology
- Medical cyclotron may be developed faster in China in the coming future

Thanks for attention

