

Advocacy for a dedicated 70 MeV Proton Therapy Facility

A. Denker, C. Rethfeldt, J. Röhrich, Helmholtz-Zentrum Berlin, Protons for Therapy,

D. Cordini, J. Heufelder, R. Stark, A. Weber Charité – Universitätsmedizin Berlin, BerlinProtonen

Hahn-Meitner-Institut (reactor, cyclotron, solar energy)

BESSY (synchrotron)

largest nonuniversity research centre in Berlin

- eye tumour therapy with protons since 1998
- cooperation between the Charité and HZB (formerly HMI)
- 12 therapy weeks per year, 1 treatment room
- work flow allows the treatment of 200 300 patients per year

entrum Berlin

- tumour control rate after 3-years' follow-up \geq 97 %
 - -85 % Melanoma 97 % control
 - 6 % Iris Melanoma 100% control
 - 5 % Hemangioma 100% control

- k = 132 isochronous cyclotron with 5 MV Van-de-Graaff injector, 5 GHz ECR source on HV terminal
- 68 ± 0.3 MeV proton beam with simple single scattering technique
- depth dose profile: distal fall-off 90 10% = 0.94 mm
 penumbra 80 20% = 2.1 mm
- all required therapeutic beam intensities delivered from cyclotron with dose rate of at least 15 Gy / min

- proton therapy = powerful tool against ocular tumours (control rates higher than 95%)
- cooperation of the patient is indispensable during treatment
- small children are unable to cooperate
 treatment under general anaesthesia
- installation of mobile anaesthesia workstation with UPS
- modification of two conventional car seats for positioning

Special Patients: Children

• 2x retinoblastoma (7 and 10 months: 6x 5.27 CGE)

~ 1 min

~ 1 to 2 min

- 1x choroidal osteoma (5 years: 4x 5.0 CGE)
- daily treatment duration: ~ 2 h
 - –anaesthesia and positioning: ~ 1 h
 - -irradiation:
 - -dismounting:
 - (emergency dismounting: ~1 min)
 - -recovering from anaesthesia: ~ 45 min
- frontal approach: possibility to spare bone structures nearly completely
- high precision in patient positioning (up to 0.2 mm)

Centrum Berlin

 proton therapy - excellent tool for the treatment of eye tumors giving very high local control rates

- 70 MeV ± ≤ 0.5% proton beam distal dose fall-off ≤ 1.0 mm:
 often critical for preventing irradiation of sensitive structures
 <u>essential for sight (optic nerve, papilla, macula)</u>
- dose rate over 15 Gy/min permits the use of lid retractors
- patients require elaborate positioning
- CT/MRI based planning + digital image guided planning
 essential for maximum plan conformity with tumour

- 31. July 2010, http://ptcog.web.psi.ch/
- 11 centres with cyclotrons listed all E_p > 200 MeV

Institution	Country	Energy	Start Treatment Planned
PSI Villingen	Switzerland	250 MeV	2010
WPE Essen	Germany	230 MeV	2010
CPO Orsay	France	230 MeV	2010
PTC Tohoku	Japan	230 MeV	2010
HUPBTC Hampton VA	USA	230 MeV	2010
CMHPTC Ruzomberok	Slovak. Rep.	250 MeV	2010
Chang Gung Mem. Taipei	Taiwan	235 MeV	2011
ProCure Chigaco	USA	230 MeV	2011
Northern Illinois	USA	250 MeV	<u> </u>
PTC Praha	Czech. Rep.	230 MeV	2013
Trento	Italy	230 MeV	2013
Skandion Uppsala	Sweden	250 MeV	2013

• degraded beam, 230(250) MeV \rightarrow 70 MeV:

-huge losses in beam intensity of more than 95%

-large energy spread to allow reasonable treatment times

Consequences of Degraded Beam

- 1. goal = tumour control
- 2. goal = spare healthy tissue from dose
 → quality of life, e.g. capacity to read
- ocular tumour therapy has to accept compromises regarding side effects or requires a sophisticated beam shaping technique as at OPTIS2 / PSI
- suggestion for a dedicated facility, optimized for the needs of ocular melanomas

- quasi-DC beam with the following properties:
- energy of extracted beam: 72 MeV
- intensity of extracted beam ~ 100 nA
- dE/E ≤ 0.4%
- half beam extent, $\sigma_{x,y}$: 2 mm 4 mm
- half beam divergence x' y': 4 mrad 3 mrad

small cyclotron

Wish List: Beam Lines

- two horizontal treatment rooms
- one vertical room: treatment of anesthetized children, physics
- broad and sharp beam in all rooms
- intensity broad beam in room: 4nA (short irradiation times)
- energy selection system: $\Delta E/E = 0.2\%$
 - close to physical limit
 - interest for the treatment of tumours lying close to sensitive structures, e.g. macula, papilla, and optic nerve

Centrum Berlin

Layout of Facility: Beam Lines

CHARI

ΤÉ

Horizontal Beam: Broad Beam

 turtle histogram of the horizontal broad beam behind the exit window: beam intensity sufficiently homogenous over more than 40 mm diameter

Horizontal Beam: Sharp Beam

turtle histogram of the horizontal sharp beam in treatment room: well-defined beam spot

Transmissions

- evaluated using Graphics TURTLE
- assumption: 80% extraction efficiency

 Place Beam 	Broad Beam	Sharp
 cyclotron exit 	100 nA	100 nA
 collimator 1 m behind exit 	60 nA	60 nA
 energy slits 	30 nA	30 nA
 collimator behind scattering foil 	6.5 nA	
 beam in treatment room 	2.5 nA	30 nA

 these calculations are now the base for detailed FLUKA and MCNPX calculations for the radiation safety

Conclusion

HZB Helmholtz Zentrum Berlin

- dedicated facility:
- 72 MeV: all ocular tumours, even in the case of optic nerve infiltration
- best therapeutic options:
 - -distal falloff close to physical limit, due to energy selection system
 - -sharp penumbra
- vertical beam line for anesthetized patients
- ability to deal with the time consuming positioning process

- exhaustive calculations of the neutron doses are in progress
- detailed design for treatment nozzles is planned
- next step: design of the accelerator

• step 1: anaesthesia on separate table

Children: Preparation

• step 2: transfer into car seat

Children: Preparation

• step 3: treatment position

ΤÉ

Children: Positioning

axial position X-ray

