Paper | Title | Page |
---|---|---|
MOPCP106 | Beam-Phase Measurement System for HIRFL | 263 |
|
||
The beam phase measurement system in HIRFL is introduced. The system had been improved using RF-signal mixing and filtering techniques and noise cancellation method. Therefore,the influence of strongly RF field disturbing signal was eliminated and the signal to noise rate was increased, and a stable and sensitive phase measurement system was developed. The phase history of the ion beam was detected by using 15 set of capacitive pick-up probes installed in the SSC cyclotron. The phase information of the measurement was necessary for tuning purposes to obtain an optimized isochronous magnetic field, where the beam intensity was increased and the beam quality was optimized . The measuremnet results before and after isochronous magnetic field for ion and ion in SSC was given . The phase measurement system was reliable by optimizing isochronous magnetic field test,and the precision reached ±0.5°,the sensitivity of the beam signal measurement was about 10nA as well. | ||
MOPCP109 | The Design of Transverse Emittance Measurement at HIRFL-CSR | 272 |
|
||
Funding: *Work supported by HIRFL-CSR project #lipeng@impcas.ac.cn HIRFL-CSR is a multi-purpose heavy ion storage ring in Lanzhou. In order to measure the transverse emittance of the injected beam on the transfer channel to the HIRFL-CSR, two kinds of emittance measurement devices which included pepper-pot and slit-grid were proposed. The pepper-pot is unique in providing an instantaneous measurement of the two-dimensional emittance of a beam. The data acquired by this method is only an image. The slit-grid is a one dimensional emittance measurement device. During the measurement, the slit, driven by the stepper motor is moved stepwise across the beam, and then the signal induced on the grid will be stored in the computer for further analysis. Because slit-grid is one dimensional device, two sets of this device are needed for transverse measurement. In this paper, we introduce the design, parameters, data acquisition and analysis of these two methods. Especially the software integration is given in this paper. Main interest is directed on the software development for emittance front-end control and data analysis such as evaluation algorithms. |
||