Author: Karamyshev, O.
Paper Title Page
MOPCP061 RF Cavity Simulations for Superconducting C400 Cyclotron 171
 
  • G.A. Karamysheva, A.A. Glazov, S. Gurskiy, N.A. Morozov
    JINR, Dubna, Moscow Region, Russia
  • M. Abs, Y. Jongen, W.J.G.M. Kleeven, S. Zaremba
    IBA, Louvain-la-Neuve, Belgium
  • O. Karamyshev
    JINR/DLNP, Dubna, Moscow region, Russia
 
  Compact superconducting isochronous cyclotron C400 has designed at IBA (Belgium) in collaboration with the JINR (Dubna). This cyclotron will be the first cyclotron in the world capable of delivering protons, carbon and helium ions for therapeutic use. 12C6+ and 4He2+ ions will be accelerated to 400 MeV/u energy and extracted by electrostatic deflector, H2+ ions will be accelerated to the energy 265 MeV/u and extracted by stripping. It is planed to use two normal conducting RF cavities for ion beam acceleration in cyclotron C400. Computer model of the double gap delta RF cavity with 4 stems was developed in is a general-purpose simulation software CST STUDIO SUITE. Necessary resonant frequency and increase of the voltage along the gaps were achieved. Optimization of the RF cavity parameters leads us to the cavity with quality factor about 14000, RF power dissipation is equal to about 50 kW per cavity.  
 
FRM1CIO03 IBA-JINR 400 MeV/u Superconducting Cyclotron for Hadron Therapy 404
 
  • N.A. Morozov, V. Aleksandrov, S. Gurskiy, G.A. Karamysheva, N.Yu. Kazarinov, S.A. Kostromin, E. Samsonov, V. Shevtsov, G. Shirkov, E. Syresin, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • M. Abs, A. Blondin, Y. Jongen, W.J.G.M. Kleeven, D. Vandeplassche, S. Zaremba
    IBA, Louvain-la-Neuve, Belgium
  • O. Karamyshev
    JINR/DLNP, Dubna, Moscow region, Russia
 
  The compact superconducting isochronous cyclotron C400 [1] has been designed by the IBA-JINR collaboration. It will be the first cyclotron in the world capable of delivering protons, carbon and helium ions for cancer treatment. The cyclotron construction is started this year within the framework of the ARCHADE project [2] (Caen, France). 12C6+ and 4He2+ ions will be accelerated to 400 MeV/u energy and extracted by the electrostatic deflector, H2+ ions will be accelerated to the energy of 265 MeV/u and extracted by stripping. The magnet yoke has a diameter of 6.6 m, the total weight of the magnet is about 700 t. The designed magnetic field corresponds to 4.5 T in the hills and 2.45 T in the valleys. Superconducting coils will be enclosed in a cryostat; all other parts of the cyclotron will be warm. Three external ion sources will be mounted on the switching magnet on the injection line located below the cyclotron. The main parameters of the cyclotron, its design, the current status of the development work on the cyclotron systems are presented.
[1] Y.Jongen et al, 'IBA C400 Cyclotron Project for Hadron Therapy', The 18th International Conference on Cyclotrons and their Applications Cyclotrons 2007, Italy 2007.
[2] http://archade.fr/
 
slides icon Slides FRM1CIO03 [1.996 MB]