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Summary

Space charge in separated turn cyclotrons causes bunches to reshape.

Resulting bunches experience “vortex effect” and tend to become circular in
median plane.

We determine:

e the “tune” of the rotating bunches,
e the size of the bunches vs. charge,
e the bunch charge limit,

o the effects of acceleration.
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Vortex Effect

At least some of this is easily understood. Leading particles are “pushed” by
space charge, but cannot advance because of isochronism and instead gain
energy and so go sideways to higher radius. Trailing particles do the reverse.
Particles at the outsides move back and those at the inside move forward.

Another way to understand is via the Coriolis effect. A typhoon results from

pressure gradients in a rotating frame: The low pressure area cannot simply
collapse because the earth’s rotation causes the particles to move sideways
instead of along the pressure gradient.

But interesting questions raised:

1. How fast does it twist? (What is its “tune”?)

2. Does this effect stabilize at any bunch charge, or is there a limit?
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M.M. Gordon (1969):

Proceedings of the Fifth International Cyclotron Conference

The longitudinal space charge
effect and energy resolution”

M. M. Gordon
Michigan State University, Michigan, U.S.A.



Consider the non-relativistic motion of a charge g in the isochronous magnetic
field B as viewed in a reference frame rotating with constant angular velocity

w whose direction is perpendicular to B and whose magnitude is the isochronous
angular frequency. If there are no electric fields present, then on a time-average
basis the charge ¢ will be at rest. Considering the electric field vector  as a
perturbation, the steady-state (non-oscillatory) velocity vector p is then given by:

mo wXy=qF (F = Electric Field) (1)

that is, the Coriolis force has the effect of reversing the magnetic field direction

as seen by ¢q in the rotating frame. Since this steady-state velocity is perpendicular
to both w and F, it is directed along1 the eﬁungzenéiﬂ Eurves associated with F,
In the rotating frame the rf electric field has a tume-average component n the

azimuthal direction given by: V,/(2nr), and Eqn (1) shows that this field causes
the particles to move radially outward with the velocity: dr/dt = qVy/2nm e,
so that gV is the average energy gain per turn. If the rf electric field is absent,
the F is produced entirely by the space charge and Eqn (1) indicates that the
charges will then circulate clockwise about the point of maximum potential,
thereby establishing a ‘vortex’ in the space charge cloud as viewed in the rotating
frame. This vortex motion 1s depicted in F ig. 1. Since both electric fields are
actually present, the resultant steady-state motion is a superposition of these
two phenomena. '

The longitudinal space charge effect has been extensively investigated for
other types of accelerators.® Synchrotron oscillations as viewed in the




charges will then circulate clockwise about the point of maximum potential,

thereby establishing a Min the space charge cloud as viewed in the rotating
frame. This vortex motion is depicted in Fig. 1. Since both electric fields are

actually present, the resultant steady-state motion is a superposition of these
two phenomena. |

The longitudinal space charge effect has been extensively investigated for
other types of accelerators.® Synchrotron oscillations as viewed in the

F
C"’ F
F
mwxv=qF

st ¥ O¥TF o a4 wo® ¥ .F ¥ . ¥ _ & ¥ % F X g el



2.1. Local vortices

In an isochronous cyclotron with separated turns the charge density and resultant
electrostatic potential have local maxima at the centre of each ion bunch or turn.
As a result, the central region of each turn will execute a local vortex motion in
which the ions remain within the same turn; the ions outside this region, however,
wﬂl partake in the overall vortex motion of the total charge cloud and it is onl

may not apply when the cyclotron operates under pulsed conditions; in the MSU
cyclotron, for example, where nine out of ten ion pulses can be completely
rejected, the radial separation between ion bunches is then always greater than
the length 7A@, so that the local vortices are quite significant in this case.
However, this special situation will not be treated here. It should be noted that
in those cases where the vortex motion seriously changes the charge distribution,
an iterated calculation may then be necessary to achieve adequate self-consistency.



Equipotential Contours -~ Density Contours

Motion in a bunch is along equipotential lines. This seems ideal until one
remembers that the equipotential contours are not the same as the density
contours.

E.g. with a beam shaped as elliptic cylinder, the potential is

2 12
VOCCL(CLer)er(aer)7 Y

but the boundary is different:

1="+2 (2)

The natural nonlinearity of space charge forces a non-circular bunch to twist
(spaghetti around a fork —W. Joho). If it were linear, it would act as a propeller.



What is the result?
In particular, what is the stationary state?

This was answered in a brilliant work by Wiel Kleeven in his thesis (1988): The
stationary state is circular bunches in the (R, 6)-plane.

Simulations (E.g. Adelmann) and measurements (also at PSI: Dolling) confirm
it.

Kleeven’s full relativistically-correct theory is tricky, tedious, but first:

There is a very elegant model due to Ricaud and Bertrand (2001): Spherical
bunches are a good approximation in cases where radial and vertical tunes
are comparable. But main feature is that the electric field is simply derived
from Coulomb’s law:

1 Q

E = 5 T
dmegr

k7 (3)



SPECIFIC CYCLOTRON CORRELATIONSUNDER SPACE CHARGE
EFFECTSIN THE CASE OF A SPHERICAL BEAM

P.Bertrand, Ch. Ricaud, GANIL, Caen, France

Abstract

High intensity primary ion beams at GANIL are necessary
to induce high radioactive production rates in the frame of
the SPIRAL project. In this paper, we show that an
intense beam can be tuned at injection in a cyclotron so as
to result in a spatialy spherical beam in the machine, with
areduced halo formation.

1 INTRODUCTION

The question on high intensity beams in cyclotrons is of
great interest (Stammbach [1]).Various new applications
require a fine beam tuning and a good comprehension of
the space charge effects in order to limit the halo
formation, and to avoid beam losses and activation in the
machine. First, we establish the exact matched solution in
the academic case where the electric space charge force is
linear. Then we present a self-consistent approach
allowing us to take into account the non-linear effects.
Finally, we present simulation results obtained in the case
of our compact injector CO1.

2 LINEAR ANALYSIS

We consider a reference particle (g,m) rotating without
acceleration on a circle according to the equations :

Xo(t) =
v/ (1)

ro COS(wt)

r_anf(cx)

mX = gk (X =Xg) + gb,y
my = ak (Y —Yo) — agb,X

Thisgivesin the complex plane, using z=x +iy :

Z-iwz-Az = -Azy A =qgk/m
z = Aet + Be? +r,e®

2 ; — . —

r< —iwr —A = 0 ; r=r,n

The solution is stable for ry,r, purely imaginary, which
leads to the following condition on the intensity :

O<u=_" = —><1;
| e w
| = 2 T ‘bZ‘ArS
max ,UOCZ h

We can use now the matrix form:

[ AX ] X—X, |
Ay Y=y
A O i
X X— X,
_AYJ _y_YO_
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Stay in the lab frame, assume flat field B. Then the magnetic and electric
forces on particle of charge ¢, mass m give:

mi = +qBy+ qk(z — )
mij = —qBi+ qk(y—yo)
where (zg,y9) = R(coswt, sinwt) is the equilibrium orbit and w = ¢B/m.

Solve using complex z = x + iy, let z = Rexp(iwt) + C exp(pt), find

k ' 2 k
m 2

Divide p by iw to get the tunes of the modes:

1
Ve = 5 1+ \/1 _© where Qmax = TeQ (@) w?r? (9)
Qmax q
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For Q > Qumax, p has a real part allowing exponential growing solutions. As we
approach this limit from below, the acceptance approaches zero; at the limit
beam must have zero emittance in horizontal plane.

For () < Qmax, We find the tune shift.

Q N R?r,

A = O (6)

B 3273

(To connect with Laslett tune shift, note “ounching factor” B o r/R. Av, is
actually 1/2 the “Laslett space charge tune shift”, as though the full shift is
shared between radial and longitudinal.)

Here’s a simpler formula for maximum charge: Notice w = ¢/Ro., mc?/q = Vi,
(938 MV for protons), ¢y = (cZy) 1, where Z, = 377 Q:

Vi, \ r3
Qmax ) (CZO> R2 (7)




Example: The PSl Injector Il: V,,, = 938 MV, R, = 9.54m, try r = 6.5 mm. This
yields Qnax = 78 pC; multiply by rf frequency of 50 MHz, we get

Lo = 4mMA (8)

Don’t quote this, though; it's not the whole story (yet). Field is still flat v, = 1, it
IS non-relativistic, bunches are spheres.

However, we have established that: Q...x o< 3. Since the rf voltage needed
for clean extraction is V;; o< r, we have

Imax o< V23 o< turns ™2, (9)

in agreement with PSI’s oft-quoted “scaling law”.
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Let » expand: Quartic Equation

Bertrand and Ricaud go on to self-consistent case of a spherical bunch with
finite emittance. They derive the following quartic equation.

rt—Cr—r5 =0 (10)

where C' = mgﬁw% ro = \/2Re,.

At zero charge, one would expect ro = v/ Re, since the Courant-Snyder
beta-function 5, = R for this flat magnet. However, there is a factor of 2 arising
from the fact that circular bunches can only be stationary if the longitudinal
and radial emittances are equal. Since the beam must be dispersion-matched,
each emittance contributes to the beam size.

For non-spherical bunches, neighbouring turn effects, etc. C' may be different
by a factor, so leaving this as a free parameter but using their quoted
e, = 1 (m)mm-mrad, we find the blue curve:



PSI Injector Il, their graph (Stammbach et al.2001)
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PSI Injector Il, quartic solution fit
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Digression: RMS Envelope Equations

To get to the fully relativistic, non-spherical theory, we need some background
on space charge and Second Moments.

In 1971, Frank Sacherer published one of the most important papers in
accelerator physics:



© 1971 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

RMS ENVELOPE EQUATIONS WITH SPACE CHARGE'

Frank J. Sacherer

CERN, Gepeva,

Summary

invelope equations for a continuous beam with uni-
form charge density and elliptical cross-section were
first derived by Kapchinsky and Vladimirsky?(K-V). In
fact, the K-V equations are not restricted to uniformly
charged beams, but are equally valid for any charge dis-—
tribution with elliptical symmetry, provided the beam
boundary and emittance are defined by rms (root-mean-
square) values. This results because (i) the second
moments of any particle distribution depend only on the
linear part of the force (determined by least squares
method), while (ii) this linear part of the force in
turn depends only on the second moments of the distribu-
tion. This is also true in practice for three-dimen-—
sional bunched beams with ellipsoidal symmetry, and
allows the formulaticn of envelope equations that in-—
clude the effect of space charge on bunch length and
energy spread.

The utility of this rms approach was first demon-
strated by Lapostolle® for statienary distributions.
Subsequently, Gluckstern® proved that the rms version
of the K-V equations remain valid for all centinuous
beams with axial symmetry. In this report these re-
sults are extended to continucus beams with elliptical
symmetry as well as to bunched beams with ellipscidal
form, and also to one-dimensional motion.

Moment equations

Consider an ensemble of particles that obey the
single-particle equations

X =p
, P

%

F(x,t) ,

where F(x,t) includes both the external force and the
self-force, F = F, + Fg. Averaging (1) over an arbi-
trary particle distribution f(x,p,t), we obtain

Switzerland

moment equations, namely the equation for each moment
involves the higher moments in an endless hierarchy.
However, if the self-force is derived from the free-—
space Poisson equation, xFg depends mainly on the
second moments and very little, if at all, on the higher
moments. This will be demonstrated in the following
sections. The remaining term Eié is associated with
emittance growth; we will aveid comsidering it by
assuming that the rms emittance

&)
15 known
and E{:)
a closed

is either constant, or that its time dependence
a priori. Then p* is given in terms of x°, xp,
by (5), and the first two equations of (4) form

set. They can be combined to give the K-V type equation:
“ w2 xF
£+ K(Ux - =2 - =0, (6)
x’ X

where x is the rms value, X =

The space-~charge term in this equation has an in-
teresting interpretation. I1f we define the linear part
of the force Fg(x,t) as e(t)x, where £(t) is determined
by minimizing the difference

D = f[s(t)x - Fs(x,t)T n(x,t) dx (7

for a fixed t, where n(x,t) = f £(x,p,t) dp, then

(8

5
e(t)x = —= x
5&2

In other words, the tms envelope equation depends only
on the linear part of the forces, determined by least
squares method,

Tt is convenient to put equation (4) intc matrix

form. The assumption of constant rms emittance is



Not as well known is that there is a much fuller version of this paper:
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r . FM5 ENVELOPE EQUATIONS WITH SPACE CHARGE

( : Prank J. Sacherer
ABSTRACT

The enveleope equations for a continuous beam with-circular
symuneltry but otherwise arbitrary charge distribution have been derived
by Lapostolle and Glucksiern. Their results are extended in this re-
port to continucus beams with elliptical symmetry and to bunched beams

with ellipsoidal form.



Main result is to generalize the Kapchinsky-Vladimirsky envelope equations to
non-uniform distributions and arbitrarily-coupled optics.

141 1lues. 115 results becauyse K1 1€ Second
moments of any particle distributlon depend oniy on the
linear part of the force (determined by least squares
method), while (ii) this linear part of tha force in
turn depends on 1 the second moments o he distrib
LOT This 1s also true 1n practice .
sional bunched be with ellipsoidal symmetry, and
allows WDH of envelope equations that in~
clude the effect of space charge on bunch length and
energy spread.

The “second moments” are nothing but the o-matrix of TRANSPORT notation.
Eg 011 = 332, o192 = 2P, 013 = Ty, efc.




Beam evolution for space charge and other
non-analytic elements

When the transfer matrix does not have a closed-form expression, we do
not have a transfer matrix M, we can use the infinitesimal transfer matrix F
instead. In the o-matrix equation oy = Mo;MT, the transfer matrix of an
infinitesimal length ds is M =1 + Fds, we find directly the equations of motion
of the second moments.

o' =Fo + oF! (11)

If all elements are simple in the sense that the transfer matrices M are
known, then they are simply multiplied together to find the matrix of the whole
beamline or synchrotron, and the final beam is found from the initial. If not, as
with space charge, 11 is solved with a Runge-Kutta integrator.



Sacherer 1971 Envelope Equation

For the envelope equation for a 3D bunch of charge, Sacherer did all the
“heavy lifting”: deriving the linear part of the space charge force from any 3D
distribution of charge, as a function of its second moments:

o0

0
2

b ¢ 3 ds
w(2i)2] X
X{a a 2 3 2 1 y) Y

a a

The integral in (34) can be expressed in terms of ellip-
tic integrals of the second kind, but direct numerical
evaluation with the Gaussian integration method 1is
easier and also quick and accurate. The complete en-

=]

velope equation for x is
i+ K (D)3 g, [ , 2
X X

X3 mx 2

] = () » (35)



Integral is now known as a “Carlson symmetric form”
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Carlson symmetric form

From Wikipedia, the free encyclopedia

In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all otf
reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forr

Versa.

The Carlson elliptic integrals are:

dt

V(E+z)(t+y)(t+ 2)
dt

Ry(x,y,2,p) = EL (t+p)/E+z)E+y)(E+2)

< dt
Re(x,y) = Re(x,y,y) = %/
]

RF(I! Y, =

Rp(z,y,z) = Rs(z,y,2,2) = 2

(t+y)(t+ z)

Since R and B are special cases of Erp and K, all elliptic intearals can ultimately be evaluated in terms of just Br and K.



THEORY OF ACCELERATED ORBITS AND SPACE
CHARGE EFFECTS IN AN AVF CYCLOTRON

PROEFSCHRIFT

ter verkrijging van de graad van dector aan de Technische Univarsiteit

Eindhovon, op gezag van do Regtor Magriftoys, prof, dr. FN. Hooge,

YOOI @8N COmmMIssie aangewezen door het Coliage van Dekanen in het
openbaar le verdedigen op vrijdag 19 augustus 1988 te 16.00 uur

coor

WILLEM JAN GERARD MARIE KLEEVEN

geborean ta Horst

The first (and only?) person to
apply the Sacherer 1971 space
charge second moments technique
to cyclotrons is Wiel Kleeven (thesis,
1988).

The vertical motion (here called z)
separates and has exactly same
envelope equation as Sacherers.
But the median plane (x, P,,s, Ps)
has coupling due to dispersion.
The equations of motion of second
moments follow:
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Stationary case

To find stationary case, simply set LHS to zero and solve. Result is:

A= _ ﬂi . _ s .-Illn.a _ e
8% 2= {x= 3, {spsb_{xpx}. {ps}_ﬁp;}
':xs}={pxpﬂ}aﬂ, {spx}z-{xps}=L!2H (4.84)

which is a circular beam. (QED)

However: the variable s is actually the coordinate in the direction of motion,

multiplied by v. Thus, to be precise, the distribution is not circular but
shortened in azimuthal direction by factor ~.



Envelope equations for Cyclotron

Kleeven combines the equations of motion of second moments:

z 2 ~ _ o
T Pxr _(e2-8I2N7) I 1 (1, 2y _ g
2 4 m ﬂn .i-..2 | -_—
dr 32:-cm o x~ X

=2 - ™
Sm,an 211 Mmoo,
9 Z m - I "gs P d T
dr 15 z 0o Z z x
m ) m

The 832/]\72 IS an angular momentum term.
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Bertrand-Ricaud-Kleeven Quartic Equation

To find the stationary beam size, set the derivative to zero. We recover exactly
the same equation as Bertrand-Ricaud, except that the constant is multiplied

by M takes into account: relativity (higher energy raises space charge

limit), radial focusing (more focusing raises space charge limit), non-sphericity
(stretching bunch in B direction raises space charge limit).

rt — Cpr —r5 =0 (12)

where

(13)
(9: = 9(1,2))

To find Q... fOr a given r, simply set emittance to zero:

Cromax = T (14)

max



General bunch shapes

The quartic equation is still correct for non-hard-edge and even for
non-ellipsoids. This was proved by Sacherer, 1971.

But then r is /5 times the rms size, and the emittance is 5 times the rms
emittance. See Sacherer 1971.

If the bunch shape is far from stationary, then it will change with time and so
the rms emittance also will change with time. In that case, the envelope
equations, while still correct, are not very useful.



Intensity Limit

The formula for maximum charge is now

T (V.,\ r 5 o
Qmax — 0 (CZ()) Rgoyacf)/ (15)

The maximum allowed size r is some factor, say ¢ smaller than the radius gain
per turn at extraction. Thus,

Reo Vigg

T =
¢ Bevevy ¢ Vim

(16)

where V;; ¢ is the rf voltage per turn on the final orbit and V;,, = mc?/q.

Let h be the number of bunches per turn, convert the charge per bunch to



current I = 22%;’ we find a simple expression for maximum current

T
T 29,8383y V27,

where g.., 3, v, V., and Vs have of course their extraction values.

Note: for aspect ratios in the range 1/2 < (/r < 2, the approximation
ge ~ 1 — 2log(¢/r) works well.

(17)



Examples:

Let us take spherical bunches, ¢ = 2.7; this means the allowed turn width is
2.7+/5 = 6 times the rms size.

e PSIRing; 590MeV;h =6; Vi =3MV — [,,.« = 2.2mA

e PSlInj.2; 72MeV;h =10; Vi3 =0.75MV — [, = 2.1 MA

Reminder: Joho “sector model” fails for PSI Injector 2.



PAUL SCHERRER INSTITUT

d_vT-E:b Current Limit in

72 MeV Injector Il

I =l'ln (UE_UI)EQ(I)
T fz, nox

n

= current limit fromlong. spacecharge

U =72MV , B =0.37

n=85 (AE, ~0.75MeV), A® ~6"
t, =1/4 (roughestimateonly!)

u, =1/3 forcenteredbeam

I, =03mA (presentrecord =2.7mA!)
=> sector model fails due tophase mixing

(space charge forces producespherical bunch. "spaghettieffect” )
=> thislowers energy spread from longitudinal space charge

=> much higher current limit !

W.Joho 2013



It’'s only Approximate...

These can be expected to be only within a factor of ~ 2 of the real limit,
because of the following considerations.

e It's too high, because this is the limit at unrealistic ¢, = 0.

e It’'s too low, because it does not inlcude “tricks” like coherent oscillations
(especially the PSI ring).

e It's too low, because it assumes spherical bunches. Can gain a factor 1/g,
by increasing the vertical beam size. For example if aspect ratiois 2 : 1,
gain a factor of 1.6.

e The ¢ parameter needed depends crucially on the amount of “halo”. For
example, if radius gain per turn at extraction is 5 times rms rather than 6
times, I,.x increases by a factor (6/5)° = 1.73.



Scaling
Thus we have the “cubic scaling law” with rf voltage, but further:

e For given energy per nucleon, heavier particles hinder rather than help.

e Large radial tune hinders rather than helps: it increases the space charge
limit for a given beam size, but it reduces radius gain per turn and latter
effect dominates.

e More bunches per turn (higher harmonic number) always helps. But may
cause difficulty at low energy.

e Higher magnetic field neither helps nor hinders, provided h is unchanged,
thus higher rf frequency for higher B. Also, more difficult to get the needed
V¢ into the smaller machine.



Paradox

Surprising features of the stationary distribution shape:

e Constant size means rf phase length of bunch decreases during
acceleration.

e Round beam stationary shape is independent of intensity.

How can this be, since without space charge bunch length increases with
acceleration maintaining same phase length?
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Well-separated turns, no space charge
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Condition for Pure Vortex State

There is a competition between vortex effect and constant phase length effect.
The winner can be found by comparing:

azimuthal change per turn from acceleration = JRA¥6 (18)
radial change per turn from space charge = 27Av,.RAf (19)

R = BRo,, Af is azimuthal extent. Thus if

oniy, > D (20)

g

then a launched circular dispersion-matched bunch will remain circular. A
non-matched non-circular bunch will match itself after a number of turns
> 1/Av,, and the generated halo will depend upon the initial mismatch.



Importantly, remember that the cyclotron space charge tune shift at

non-relativistic energy is independent of energy: Ay, = ——%¢ — r and w

Ameqr3mw
constant, and that the space charge limit is where the tune s depressed by
half. Thus an injector cyclotron operating near the space charge limit will have
Av, ~ v, ~ 1. Since usually in such a machine 65 ~ (3, it will start and remain

in a vortex state. (03 rapidly decreases.)

This is the case for PSl Inj.2, already at turn 1.

For TRIUMF, just after the injection gap, energy is 390 keV, and after one turn
itis 750 keV, so % = 0.6. The tune shift at 250 1A is ~ 1/40, s0 27 A, ~ 0.16.

So it is clearly in an in-between state: bunches stretch and also have some
vortex character.

This is verified when we look at the turn structure.
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Extraction by Stripping does not care about A E of
a Turn

TRIUMF’s messy turns have little consequence. The reason is that TRIUMF
extracts by stripping and separated turns are not needed. Irregular turns do
not contribute to extracted emittance or energy spread because the distortions
happen in such a way as to maintain the close correlation between energy
and radius.

In general, this means that high output of compact cyclotrons, which is
attained by very large phase acceptance, is not applicable to separated turn
cyclotrons. In fact, Pozdeyev’s experiments show that if you try, the bunches
split into many droplets; separate turns become impossible.



Alternative route to high intensity:

Use high harmonic number, since I, o h.

Similar to condition 20, we can find a condition for space charge dominating
over the effects of waveform non-linearity:

turn separation (A¢)* 66 hA¢

2 A
TEVr 2 T ineh length 2 B2

(21)

(Ap = hAO = hAGd is rf phase length.)

This criterion is satisfied for the PSI Inj.2; it explains why they do not need
flattopping at their highest intensities.

But it indicates that increasing h will at some point decrease the space charge
limit. (This holds some promise, though.)



Conclusions

e A new formula for maximum intensity for separated turn cyclotrons has
been derived from envelope theory, and its scaling characteristics explored.

e The formula applies to cases where the injected bunch is sufficiently short
that the vortex effect curls it up into a single droplet.

e A qualitative intensity threshold has been derived for the vortex effect to
take place; below the threshold, bunches expand to maintain their phase
length as (3 increases, but above it, the bunch maintains length and
consequently decreases in phase length.



BACKUP SLIDES



TRANSOPTR a real 3D space charge envelope code

In 1983, Mark dedJong wrote a space charge module for the code TRANSOPTR.
It solves the equations of motion of the second moments precisely as
Sacherer outlined.

| have been using this code for > 25 years now, expanding it to include:
electrostatic quads and bends, accelerator columns and einzel lenses,
varying axial magnetic fields, inflectors, Wien filters, bunchers,...
TRANSOPTR'’s technique is to find the angle of orientation of the ellipsoid,
solve the 3 elliptic integrals for the major axes, transform back to

the lab frame, apply the external fields, at each Runge Kutta step.
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Summary

TRANSOPTRL, 3 beam transport design code,
incorporates automatic optimization of a beam transport
system under general constraints. This optimization
can be nerformed for either first order (with or with-
out space charge effects) or second order calculations.
Space charge effects are calculated in the x-y plane
for continuous beams or in x-y-z space for bunched
beams using a new approach. The method integrates a
set of differential equations describing the evolution
of the ¢ beam matrix along the main trajectory where
the o matrix represents the beam ellipsoid in phase
space. A spatially uniform charge density approxi-
mation is used and emittance growth is assumed to be
negligible. Changes in the optimum beam transport con-
ditions of a system caused by space charge effects can
be readilvy evaluated with this ccde. Some applications
of the code are ygiven.

Theory

glu,v) = J; (1+8) ™3/ 2 uss) "2 (yas) "1 24 (6)
and a, b, c are the semi-axes of the ellipsoid.

Equation (1) is adequate for studying the evo-
lution of o in those systems where R can be easily
evaluated for each beam transport element. This is the
case for most common elements fn the absence of space
charge.

When space charge is introduced, (1) is not con-
venient since the R matrix becomas a function of .
Then the evolution of o is best described by a differ-
ential equation?

al(s) = F(s)ols) + c[s)FT(s) (7)
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TRANSOPTR Example of propellering bunch

22 pC bunch being accelerated
In a cyclotron, envelopes as
function of R; initial bunch
half length = 10 mm (upper),
and 5mm (lower). The
parameters correspond to the
TRIUMF 500 MeV cyclotron:
R, = 10m, so the energy
range on this plot is from 0.3
to 20 MeV; 50 turns since
AFE = 0.4 MeV/turn.

We see: Upper is below
“vortex” threshold, Lower is
not.



Digression: New Injection Line Optics

TRANSOPTR’s successes with and without space charge are manifold; | use it for low energy,
high energy beamlines, synchrotrons, electron gun. Arguably the most impressive success is
the design of the new 300keV TRIUMF injection line, consisting of 25 quads, the cyclotron
axial field that couples x and y, the bunching beam, the inflector that couples all 3 directions.
Design is based on a calculation of all 21 second moments ((x*), (xP,), (xy), etc.) found
from a Runge-Kutta integration of the 21 coupled differential equations in a fully 6-dimensional
phase space, with varying axial magnetic field, space charge of arbitrarily-oriented ellipsoidal
bunches (requiring numerical evaluation of 3 elliptic integrals at every RK step), through the
inflector using Kleeven-Baartman Hamiltonian, through deflector, into magnetic field with RF
focusing at 2 gaps per turn, including varying magnetic focusing, slipping RF phase so RF
focusing also varies, while trying to minimize the radial and vertical envelope modulations
over the first hundred or so turns.

The calculation was run with a simulated annealing optimizer that varied the placement,
strength and orientation of the final 7 matching quadrupoles.

The new line was built, the theoretical settings were set, and within a few hours of steering
and buncher tuning (NOT QUAD tuning!), it began to outperform the old injection line.



TRANSOPTR Calculation of Injection into TRIUMF
Cyclotron and First Turns
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Long Bunches

What happens if bunches are much longer than wide?

Eduard Pozdeyev (2003):



Break up of a “long” bunch in SIR
(simulation)
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This is non-accelerated. For accelerated on one harmonic, this would
additionally be warped into a parabolic shape. Turns are then VERY wide.

To avoid this, phase length of bunch must be selected at first turn. Selectivity
IS better, the higher the injection energy and rf voltage.

Similarly, the tune shift calculated previously are also to be multiplied by
%. For reference, here is a table of ¢(1,r./r)

Tz//r g(larz/r)
0.100 2.09
0.500 1.42
0.707 1.21
1.000 1.00
1.414 0.80
2.000 0.62
10.00 0.15
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Vertical Limit

In the same way, we find for the vertical envelope:

~4 ~
z —CL,z— 2z, =

where
Q q

C p— , P —
T dmey m(yvLw)? 9z ’
(9. = g(%a %))
Note: By Gauss’ law, there is a sum rule:
gz g gz
4=

(22)

(23)

(24)

(29)



Summary —cont’d

This concerns conventional cyclotrons where isochronism is global:

Conventional

T‘ 1. Conventional: Orbit period independent of energy.
Isochronism is BOTH local and global. (“conventional”
does NOT mean “weak-focusing”.)

EMMA

\/ 2. EMMA-type: Orbit period is parabolic with energy;
! actually only isochronous at one (the middle) energy.
Isochronism is local, NOT global.

Sepuraed Onbit 3. Separated Orbit: Different orbits have same period,
but an individual orbit is not isochronous, so there is
longitudinal focusing. Isochronism is global, NOT local.




