

CYCLOTRON 13

ECR SOURCE DEVELOPMENT

Thomas Thuillier LPSC 53 rue des Martyrs 38026 Grenoble cedex France e-mail: thuillier@lpsc.in2p3.fr

LBL from 08/12 to 08/13

Preamble

- The ECRIS'12 Workshop and the ICIS'13 Conference demonstrated that the ECR Ion Source field is still very active
- Many interesting new developments have been presented in the last years, but it 's unfortunately impossible to summarize all of them in 25 minutes
- The philosophy retained for this presentation is to focus on some
 - new challenging projects
 - newcomers
 - Original/exotic developments

OUTLINE

• ECRIS DEVELOPEMENT FOR (non cyclotron) ACCELERATORS

- FRIB (MSU)
- SPIRAL2 (GANIL)
- RISP (IBS) newcomer
- KBSI (KBSI Busan) newcomer
- SOME ORIGINAL/EXOTIC ECRIS DEVELOPMENT
 - INTENSE PULSED PROTON BEAMS AT IAP (IAP RAS)
 - INDUSTRIAL APPLICATIONS WITH THE COMIC SOURCES (LPSC)
 - $TE_{01} \rightarrow HE_{11}$ MODE CONVERTER FOR THE VENUS ECR ION SOURCE (LBL)
 - MASS SPECTROSCOPY (ANSTO)
 newcomer

ECR developments for the FRIB project

- A facility to study nuclei synthesis and properties far from stability by means of radioactive ion beams
- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400 kW to the target

- 450 μ A of ²³⁸U³³⁺+²³⁸U³⁴⁺ required from the source
- Beam norm. emittance (99%):
 - <0.9 π.mm.mrad (for single charge)
 - <0.6 π.mm.mrad (for dual charge)

FRIB ECR systems

- Two ECR on two 100 kV HV platforms:
 - Existing ARTEMIS ECRIS (room temp.))
 - For commissioning
 - An upgraded version of VENUS
 - For high intensity beam operation
 - Under design
- A complex achromatic LEBT to transport simultaneously U³³⁺+U³⁴⁺ beams
 - The LINAC is one floor below (not shown here)

Uranium production test with VENUS (LBNL+MSU)

• Emittance compatible with FRIB specification

- Impressive Uranium spectrum!
- Oven with a Rhenium crucible
- U consumption~9 mg/h
- 2 kW 18 GHz+6.5 kW 28 GHz
 - VENUS tuned to its maximum experimental power
- LEBT transmission limited at 22 kV
 - HV drain 9 mA, FC tot~5mA
- No production limitation observed: source still responsive with power and oven temperature

Validates the FRIB operation With 220 μ A U³³⁺ + 220 μ A U³⁴⁺

VENUS upgrade for FRIB

VENUS original design

VENUS upgrade for FRIB

- Cold mass of FRIB SC-ECR essentially identical to VENUS
 - re-design entrusted to LBL Superconducting Group (see next slides)
- Original VENUS Cryostat extensively modified (MSU)
 - Cooling rely only on cryocoolers
 - Added cooling capacity at 4.2 K (8 to 9W total vs. 5 to 6 W for VENUS)
 - Optimized material, and design to minimize heat leak and simplify maintenance

FRIB / VENUS upgrade: possible new cold mass design

- New cold mass mechanics design for the coils
 - Bladders and Keys
- Each sextupole coil is dismountable
- Pre-stress can be modified/optimized
 - By changing the keys size

Yoke keyway features can be incorporated in

Solenoid Bobbin eliminating a thin. cylindrical machining. Also, the Load Pads can be made thicker and structurally stable.

SUPERCONDUCTING MAGNET GROUP, LBL

FRIB / VENUS upgrade: possible new cold mass design

ECR development for the Spiral2 project

- GANIL extension to produce radioactive ion beams (RIB)
 - 5 mA Deuterons on target
 - Re-acceleration of RIBs in existing cyclotron
- Stable Heavy ion program with the LINAC
 - Super Separator Spectrometer
 - Neutron for Science

ECR challenge:

- Produce 1 mA A/Q=3 beams up to the argon mass at 60 kV
- Produce high intensity Metallic
 Deuteron Proton source beams (Ni, Ca, S, Si, C...)
 - Emittance 1σ norm. RMS<0.4 π.mm.mrad

ECR Developments for the SPIRAL2 Project

Deuteron Spiral2 LEBT commissioning

- A variation of the SILHI (Taylor) source
 - Permanent magnets
 - The source produces up to 100 mA of D+
 - 0.1 to 5 mA required @ 40 kV OK (see plot)
 - Emittance OK
- Source ant LEBT commissionned at CEA/IRFU Saclay

1: injection of N₂, P=cst 2: reduction of P, N₂=cst 3:D reduced,N₂ increased

Deuteron LEBT @ IRFU

A/Q=3 ECR and LEBT commissioning

- Source and LEBT commissionned at LPSC, Grenoble
 - Excellent transmission (T>90%)
- Starter source is PHOENIX V2
 - Room temperature 18 GHz ECRIS
 - OK for LINAC commissioning at GANIL and first year experiments
 - Emittance OK
- But a new high performance ECRIS should be built (and financed) to fulfill the final beam requirement

lon	Required (µA)	PHOENIX V2 (μΑ)	World record (µA)	Ref.
O ⁶⁺	1000	1300	3000	VENUS
S ¹²⁺	240	55	-	-
Ar ¹⁴⁺	420	50	514	VENUS
Ca ¹⁶⁺	160	16	70	SECRAL
Ni ¹⁹⁺	57	19	50	SUSI

Heavy ion LEBT @ LPSC

ECR Developments for the SPIRAL2 Project

Spiral2 ECR A/Q=3 upgrade and prospect

- PHOENIX V2→PHOENIX V3 upgrade
 - Increase the plasma chamber volume : $0.7 \rightarrow 1.4$ litre
 - ECR Magnetic confinement kept identical
 - Expected shift of CSD: Gain expected +50-100% on A/Q=3
 - Under design, to be assembled and tested in 2014

- Long term upgrade: design and build a superconducting 28 GHz ECRIS
 - Pending funding

The Rare Isotope Science Project (Institute of Basic Science)

ECRIS development for the RAON accelerator

- A Newcomer team in the ECRIS community from Daejeon
- A 28 GHz superconducting ECRIS is under development
 - Overal dimension and cryostat technology similar to VENUS
 - 4 axial coils instead of the usual 3 (inspired by the SUSI SC (MSU) with its 6 coils)

Design result : B_{inj} = 3.61 T, B_{ext} = 2.07 T, B_r = 2.17 B_{ecr} , B_{min} = 0.545 T

Superconducting coil prototyping

- 3 single hexapolar coils prototype have been built
 - Rectangular wire 1.9x1 mm² with Cu:NbTi ratio of 3:1
 - 1 saddle coil wet winding, no fiber cloth
 - 1 racetrack coil pre-preg impregnation (wet winding, fiber cloth)
 - 1 saddle coil, pre-preg impregnation => validated

racetrack type

Saddle type

Superconducting coil test performed in LHe

- The final saddle prototype reached 95% of wire Ic current data
 - Validation of the design
- Other coils under construction
- Final assembly and test will follow

A new compact LINAC at the Korean Basic Science Institute, (KBSI), Busan, South Korea

- Project started in 2009 Unfortunately only a few papers available on the topic...
- The goal is to produce intense fast neutron flux up 5×10¹³ n/s applied to neutron radiography
- A LINAC accelerates 1 mA of ⁷Li³⁺ to produce fast neutron flux in a windowless hydrogen target
 - LEBT equipped with a 28 GHz SC ECR Ion Source
 - RFQ 500 kV/u
 - DTL 3 MeV/u

A new 28 GHz ECRIS at KBSI

- Another Newcomer Team in the ECR community
- The ECRIS construction is well advanced
 - The ECRIS design and technology is close to VENUS (LBNL)
 - Except for the hexapole coils which are more inspired from SECRAL (IMP Lanzhou)
 - Racetrack coils with a trapezoid section

KAERI 28 GHz ECRIS magnetic design

A new 28 GHz ECRIS at KBSI

- Individual Coil test in a vertical cryostat
 - Axial coils OK
 - Hexapole reacetrack at 70% of design
 - At least suitable for a high performance 18 GHz operation (1.5T)
 - Tests stopped because of LHe shortage

ECR Developments for the KBSI LINAC Project

A new 28 GHz ECRIS at KBSI

- The source has been assembled recently:
 - We wish them good luck with the final global magnetic test!

Intense pulsed proton beam at IAP RAS

- SMIS 37 is a pulsed ECR operated at 37.5 GHz
- RF power up to 100 kW
- pulse duration ≤ 1.5 ms
- Optical microwave coupling
- Gaussian beam (linear polarization)
- Fast pulsed gas valve (5 ms pulse)
- Water cooled pulsed coil
 - Capacitor discharge (T/2=11 ms)
 - Bmax~4 T
- HV ≤ 65 kV
- Beam Current measured right at the extraction in a Faraday cup
- Or current analyzed in a bending magnet
- Beam emittance measured with a pepper pot
- <u>Gasdynamic regime</u> (collisional plasma), P~10⁻³-10⁻⁴ mbar

450 mA of H⁺

- SMIS 37 produces pulses up to 450 mA of H⁺_
 - Diode Ion Extraction:
 - HV electrode Ø10 mm
 - ground electrode Ø22 mm
 - Proton fraction ~95%

H⁺ Emittance measurement

- SMIS 37 Beam emittance
 - 450 mA H+
 - Current density~600 mA/cm2
 - 90% norm. Emittance is 0.3 π .mm.mrad
 - So RMS norm. Emittance~0.06 π .mm.mrad
- Why is the emittance so small?
 - Because the magnetic emittance is small!
 - plasma drifts far out of the magnetic trap and the beam is accelerated where B<<Bmax

Gasdynamic

COMIC sources at LPSC

• COMIC 2.45 GHz

- Compact ECR source operated at low power
- 10 W solid amplifier

COMIC 2.45 GHz

1W vacuum ECRIS

COMIC 2.45 GHz

- Emittance - Xenon – 1.8 μA tot / 3 W / Ø 0.3 mm /15 kV

1 σ RMS 1.2 π.mm.mrad 15 KV 3/10 mm ext.

COMIC Application on a Focusing Ion Beam

Microsurgery Of an ant head

COMIC Application for Implantation

• Multi-beam implanter 10 sources (HV>30 kV)

COMIC Application for thin film deposition

• Multi-Beam Sputtering with 20 ECR sources

Grene bie

COMIC 5.8 GHz

- The Goal is to improve the current density (ECR scaling law)
 - Quarter wave cavity down-scaled from 2.45 to 5.8 GHz
 - A clear current increase is observed
 - Higher plasma density

15 kV- Ø 0.3 mm extraction - Ar gas
pressure:
2×10⁻⁶ mbar at 2.45 GHz
1×10⁻⁵ mbar at 5.8 GHz

TE₀₁ to HE₁₁ Mode Converter for the VENUS ECR lon Source

- Motivations:
 - The usual 18 GHz mode injected in an ECRIS is the TE₁₀
 - Transverse Electric, linearly polarized
 - Rectangular waveguide
 - Efficient plasma coupling
 - Excellent performance vs RF power
 - The 24/28 GHz mode injected in new generation ECRIS is the TE_{01}^{\sim}
 - Oversized circular waveguide
 - Transverse Electric circular polarization
 - The RF power density profile is hollow
 - Weaker performance vs power observed /18 GHz
 - Is this weaker performance coming from the TE₀₁ mode used?

HE₁₁ mode vs TE₀₁

- The HE_{11} mode is used in fusion research since the 80's
 - HE₁₁=Hybrid Electric~85%TE₁₁+15%TM₁₁
 - Quasi gaussian beam profile with a linear polarization

• The HE_{11} @ 28 GHz is nearly equivalent to the TE_{10} @ 18 GHz

HE₁₁ conversion steps

- The mode conversion is done into two steps:
 - 1) Convert the TE_{01} to TE_{11} using a circular waveguide whose center is wiggling in a direction perpendicular to the waveguide axis. This is the « **Snake** ».
 - 2) Convert partially the TE₁₁ to TM₁₁ to build up the HE₁₁ in a corrugated waveguide whose groove depth is following a special curve from $\lambda/2$ to $\lambda/4$

Snake optimum profile

Snake calculated mode conversion profile

New VENUS Injection Assembly

Initial tests with the HE11 mode launcher

- Installation beginning of August 2013
- It has preformed very well in the early tests.
 - Up to 5 kW of power
 - No problems with arcing or parasitic mode generation
- Compared to the old system
 - Tuning appears to be broader
 - Smoother dependence on 28 GHz power (more monotonic)
 - Maximum Xe²⁷⁺ test at 5 kW of 28 GHz only
 - TE₀₁ mode launcher 330 µA
 - HE₁₁ mode launcher 370 µA
 - Some indications of improvements when used in two frequency mode with the 18 GHz
- Further development is needed see if HE_{11} mode launching has significant advantages over TE_{01} mode
 - VENUS has an enormous range of settings, ions and power levels
 - As Geller said, "Tuning an ECR ion source is searching for an island of stability in a sea of turbulence." This will take some time.

The Ion Charge Exchange Spectroscopy at ANSTO

- 7 GHz ECRIS
 - Quartz tube
 - Volume 300 ml
 - P<100 W
- ¹⁴C:¹²C ratio measurement down to 10⁻⁹
- Charge 3+
 - ¹⁴N3+ rejection
 - Molecule rejection (¹³CH,¹²CH₂..)
- Online transient ¹⁴C:¹²C ratio count foreseen for medical application
- Limitations:
 - Reproducibility
 - Ion residence time in plasma chamber
 - background

Source upgrade

Hexapole rotation to enhance desorption from the plasma chamber
 walls

Thank you for your attention!