

New Developments and Capabilities at the Coupled Cyclotron Facility at Michigan State University

National Superconducting Cylotron Laboratory (NSCL)

- National user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications
- One of the three nuclear-science flagship facilities in the US: RHIC at BNL, CEBAF at JLAB, NSCL at MSU [2007 NSAC Long Rane Plan]
- Largest university-based nuclear physics laboratory in the United States: 10% of U.S. nuclear science Ph.D.s
- Over 500 employees (NSCL+FRIB), incl. 45 graduate students, and 43 faculty over 700 users
- Graduate program in nuclear physics ranked 1st [U.S. News and World Report]
- NSCL provides accelerated beams of heavy ions from oxygen to uranium, including rare isotope beams

 Michigan State University has been selected to establish FRIB, the Facility for Rare Isotope Beams

2 ECR ion sources 2 coupled cyclotrons: K500 + K1200 primary beams: oxygen to uranium K500: 8 - 14 MeV/u, 2-8 eµA K1200: 100 - 170 MeV/u, up to 2 kW

A1900 fragment separator to produce rare isotope beams by projectile fragmentation

NSCL Primary Beam List

Isotope	Energy [MeV/u]	Intensity [pnA]	Isotope	Energy [MeV/u]	Intensity [pnA]
¹⁶ O	150	175	⁸² Se	140	35
¹⁸ O	120	150	⁷⁸ Kr	150	25
²⁰ Ne	170	80	⁸⁶ Kr	100	15
²² Ne	120	80	⁸⁶ Kr	140	25
²² Ne	150	100	⁹⁶ Zr	120	1.5
²⁴ Mg	170	60	¹¹² Sn	120	4
³⁶ Ar	150	75	¹¹⁸ Sn	120	1.5
⁴⁰ Ar	140	75	¹²⁴ Sn	120	1.5
⁴⁰ Ca	140	50	¹²⁴ Xe	140	10
⁴⁸ Ca	90	15	¹³⁶ Xe	120	2
⁴⁸ Ca	140	80	²⁰⁸ Pb	85	1.5
⁵⁸ Ni	160	20	²⁰⁹ Bi	80	1
⁶⁴ Ni	140	7	²³⁸ U	45	0.1
⁷⁶ Ge	130	25	²³⁸ U	80	0.2

Beam list intensities are typical intensities for experiment planning purposes and are maintainable for extended time periods.

CCF Primary Beam Isotope Statistics

Coupled Cyclotron Facility (CCF) delivers a different primary beam every 5 to 7 days, typically 30 beam changes per year.

The development of new primary beams (isotope and energy) is driven by user demand.

Overview of the Fragment Separation Technique

6

ISCL

A1900 Diagnostics Setup and Particle Identification

ReA post-accelerator

2700

2600

240

Rare isotope beams from A1900 fragment separator go through a momentum compression stage based on

Gas Thermalization – Gas Catcher

120 cm gas catcher from Argonne National Lab operates with helium at ~100 mbar and -5°C

gas catcher mounted on high-voltage platform with variable potential up to 60 kV

total extraction efficiency: ~10%

EBIT charge breeder Q/A mass separator multi harmonic buncher (MHB) room-temperature RFQ 2 beta=0.041 cryomodules with 2 + 6 QWR 1 beta=0.085 cryomodule (to be installed in 2014)

- Singly charged ions quasi-continuously injected in the high-current density electron beam
- lons trapped by trap electrodes & the e-beam space-charge potential
- Highly charged produced by electron-impact ionization (i.e., charge breeding)
- Pulsed extraction of highly charged ions

The ReA EBIT Charge Breeder

Requirements for ReA charge breeder:

- Breeding time < 50 ms (for short-lived isotopes)
- Efficiency: 20% 50 % (inject.-breeding-extract.)
- Charge capacity: up to 10¹⁰ positive charges
- Low contamination level...

Key design parameters:

- High electron current: up to 2.4 A (large cathode)
- E-beam energy <30 keV (e.g. Ne-like U⁸²⁺)
- Current density (6 T): ~10⁴ A/cm²
- Reduced contamination: 4-K trap structure

ReA EBIT Charge Breeder

Q/A Mass Separator

Design parameters:

- Resolving power ~100 at 120 π mm mrad
- Achromatic within $\Delta E/E \sim 3\%$
- Accept EBIT beams of large energy spread

Charge-bred ⁸⁵Rb from ion source

Residual Gas - no EBIT injection

Total capture efficiency is in good agreement with expected capture efficiency (~30%) for an electron beam current density of ~350 A/cm²

Multiharmonic Buncher (MHB)

Used to achieve beam properties required for nuclear physics experiments:

energy spread: < 1keV/u bunch length: ~ 1 ns

Radio Frequency Quadrupole (RFQ)

Quadrupole transport channel with longitudinal modulation to achieve accelerating field along the beam direction

Injection energy: 12 keV/u Extraction energy: 600 keV/u Operating frequency: 80.5 MHz Power (CW): ~120 kW

Superconducting Quarter Wave Resonators Operating frequency: 80.5 MHz

First cryomodule: 2 solenoid, 1 cavity used for beam matching from RFQ

Second cryomodule: 6 accelerating cavities acceleration up to 1.5 MeV/u (Q/A=0.25) 3 MeV/u (Q/A=0.5) deceleration down to 300 keV/u

commissioned acceleration voltage: 0.8 MV/cavity (ReA specifiaction value: 0.45 MV/ cavity)

Reacceleration of charge-bred ³⁹K ions

Energy spectrum measured by scattering from a foil into a silicon detector.

Reacceleration of charge-bred ⁸⁷**Rb ions**

from an offline source in the gas stopping area.

Residual gas ions (O, Ar) from EBIT with similar A/Q ratio can be used as pilot beams for tuning of the linac and the transport beam lines.

First two cryomodules (beta=0.041) are fully commissioned. Third cryomodule (beta=0.085) will be installed in 2014.

ReA Reaccelerator

Achromatic beam transport and distribution line from ReA3 platform to multiple experimental end station on ReA3 low energy experimental hall.

Status:

General purpose beam line is fully commissioned.

AT-TPC and south beam line will be finished this fall.

Flexible beam optics allows variuos experimental setups.

ReA3 Experimental Hall - Equipment

First Experiment with Reaccelerated Rare Isotope Beam

NSCL experiment 13507 - August 2013

Excitation function of the ³⁷K(p,p) reaction, measured with the ANASEN detector

³⁷K transported to gas stopping area.
thermalized in ANL gas catcher,
charge bred to ³⁷K¹⁶⁺ in EBIT charge breeder,
reacclerated with ReA3,
and delivered to ANASEN (rate >500 pps)

³⁷K (76.7 MeV/u) rare isotope beam,

produced by fragmentation of stable ⁴⁰Ca (140 MeV/u) in A1900 fragment separator

(focal plane rate: ~9 · 10⁶ pps)

Particle ID at experiment location

Reaccelerator facility at NSCL

Substantial progress with commissioning of gas stopping area, EBIT charge breeder, and the ReA3 reaccelerator allow experiments with reaccelerated rare isotope beams.

First user experiment with reaccelerated beam

Important milestone reached with delivery of a thermalized and subsequently reaccelerated rare isotope beam to an user experiment.

Future commissioning

Commissioning will continue with emphasis on reaching higher gas cell extraction and charge breeding efficiencies.

Installation of third cryomodule in 2014 will allow achieving full energy of the ReA3 reaccelerator.

The newly commissioned areas will become part of FRIB at Michigan State University:

G. Bollen, A. Lapierre, D. Leitner, D.J. Morrissey, A.J. Rodriguez, S. Schwarz, C. Sumithrarachchi, S. Williams, W. Wittmer, and all others of the NSCL/FRIB staff

