Acceleration of Intense Heavy Ion Beams in RIBF Cascaded Cyclotrons

On behalf of Acceleration Group RIKEN Nishina Center, N. Fukunishi

RIKEN RI Beam Factory

The first of the second-generation in-flight facilities

Specifications of RIBF ring cyclotrons

fRC	IRC	SRC	RRC
700	980	2600	540
156	277	356	89
330	415	536	356
1300	2900	8300	2400
4	4	6	4
10	20	4 (SC) 22 (NC)	26
200	600	3000 (SC) I 200 (NC)	600
2+FT	2+FT	4+FT	2
54.75	18~38	18~38	18~38
0.8	1.1	2.0	0.28
1.3	1.3	1.8	0.7
	fRC 700 156 330 1300 4 10 200 2+FT 54.75 0.8 1.3	fRCIRC700980156277330415130029004410202006002+FT2+FT54.7518~380.81.11.31.3	fRCIRCSRC70098026001562773563304155361300290083004461020 $\begin{array}{c} 4 \ (SC) \ 22 \ (NC) \end{array}$ 200600 $\begin{array}{c} 3000 \ (SC) \ 22 \ (NC) \end{array}$ 2+FT2+FT4+FT54.7518~3818~380.81.12.01.31.31.8

*uranium acceleration

SC : superconducting NC : normal conducting FT : flattop resonator

Acceleration Modes

Major Problems of RIBF until 2012

Low beam intensity of ²³⁸U

ion (date)	(pnA)	
²³⁸ U ⁸⁶⁺ (07/07/03)	0.05	
⁸⁶ Kr ³⁴⁺ (07/11/04)	33	
²³⁸ U ⁸⁶⁺ (08/11/16)	0.4	
⁴⁸ Ca ²⁰⁺ (08/12/21)	175	
⁴ He ²⁺ (09/10/31)	1000	
²³⁸ U ⁸⁶⁺ (09/12/19)	0.8	
⁴⁸ Ca ²⁰⁺ (10/5/31)	230	
¹⁸ O ⁸⁺ (10/6/17)	1000	

Extracts from Linac IO presentation (N. Fukunishi)

Too short serviceable time of charge strippers (Carbon foils)

Longitudinal beam width measured 38 m downstream of the stripper

To Overcome Problems

(1)To increase the beam intensity of uranium ions, we constructed
 •a 28-GHz SC-ECRIS
 •a new injector RILAC2

(2)For higher-intensity uranium beams obtained by the new injector, we developed•a helium gas stripper (first-stage stripper)

- •a rotating beryllium disk stripper (second-stage stripper for uranium)
- •an air stripper (second-stage stripper for xenon)
- •a new beam dump to withstand a 10-kW beam loss (first-stage stripping section)

(3)Because the helium gas stripper requires acceleration of ²³⁸U⁶⁵⁺ in fRC,

•fRC was upgraded in bending power

•K-number (570 MeV → 700 MeV)

28-GHz Superconducting ECR Ion Source

Y. Higurashi will report in this conference!

High magnetic field

 $B_{inj} \sim 4 T, B_{ext} \sim 2 T$

 $B_r \sim 2 T, B_{min} < I T$

Flexible magnetic field configuration are available by using 6 solenoid coils.
ECR zone, as large as possible

Plasma chamber

Diameter : 15 cm Length : 50 cm Plasma volume : ~ 1100 cm³ •large plasma volume for long confinement time

Microwave

frequency : 28 GHz Power : 10 kW

T. Nakagawa, RIPS workshop, May 19-21, Daejeon, Korea

Performance in routine operation

New Injector RILAC2

K. Suda et al., Nucl. Instrum. Methods A722 (2013) 55 / K.Yamada et al., IPAC12, New Orleans, Louisiana, USA (2012) TUOBA02.

Performance of New Injector RILAC2

(2011/12/04 9:00 ~ 2011/12/05 9:00)

Developments of Charge-state Strippers

Bending Power Upgrade of fRC

²³⁸U⁷¹⁺ (carbon foil) ⇒²³⁸U⁶⁵⁺ (helium gas)

Power supplies of Sector Magnets 1.69 T (588 A) → 1.85 T (830 A*)
Injection Bending Magnet (BM) 1.7 T → 1.9 T
Magnetic Inflection Channel 2 & PS 0.5 T → 0.6 T
Extraction Bending Magnet (EBM) 1.4 T → 1.55 T

•Steering Magnets

*estimated by TOSCA using the default BH curve.

BM : Bending Magnet (injection) MIC : Magnetic Inflection Channel MDC : Magnetic Deflection Channel EIC : Electric Inflection Channel EDC : Electric Deflection Channel EBM : Extraction Bending Magnet MDP : Main Differential Probe

Prediction Capability of Magnetic-Field Calculation

In TOSCA simulation,

BH curve : calibrated by measured magnetic field data obtained before fRC commissioning in 2006. Pole deformation (magnetic and vacuum forces) : included Effects of magnetic channels and bending magnets : included

Design Tolerance

Differences between actual operating parameters and results of numerical simulation for main and trim coils.

Design errors M : Main coil \rightarrow less than 5 amperes I \sim 10 :Trim coils \rightarrow 30 A (\sim 6 gauss)

Isochronism & Orbital Motion (²³⁸U⁶⁵⁺)

Injection and Extraction Devices

Numbers in parentheses show the old specifications.

BM : Bending Magnet used for beam injection MIC2 : Magnetic Inflection Channel 2 ST : Steering Magnet

EBM : Extraction Bending Magnet

Injection Orbit Correction

Results of fRC Upgrade

The helium gas stripper showed

•mean charge state at equilibrium 65+, > 1 mg/cm²

•transient enhancement of charge stripping efficiency at 0.7 mg/cm² 64+~27% 65+~21% owing to atomic shell effect

Isochronous magnetic fields

Present Performance

Isochronous Magnetic Fields

Isochronism of RRC $\sim < \pm 0.5$ ns

RRC : 18.25 MHz \rightarrow 0.1 ns = 0.65 RF degree

History of Beam Intensity Upgrade

Transmission Efficiency

(Best performance of RIBF cyclotron cascade)

Reasons of low transmission efficiencies in the fixed energy mode are

large energy spread due to thick charge strippers
emittance growths in horizontal direction because the first stage charge stripper and a rebuncher between fRC and IRC are placed at dispersive points.
others?

Beam Availability

Beam availability = <u>actual beam service time</u> scheduled beam service time

2011 Oct.~Dec. 345MeV/u-238U 2011 Dec. 345MeV/u-124Xe 2012 Feb. 294MeV/u-pol D 2012 Mar. 294MeV/u-18O 2012 Mar.~Apr. 230MeV/u-18O 2012 May 345MeV/u-48Ca 2012 June 345MeV/u-124Xe 2012 July 345MeV/u-70Zn 2012 Nov. 345MeV/u-238U 2012 Dec. 345MeV/u-238U 2013 Apr. 345 MeV/u-18O 2013 Apr. 250MeV/u-18O 2013 Apr.-May 345MeV/u-238U 2013 June 345MeV/u-124Xe

Any unscheduled beam service interruptions are counted as the downtime!

Details of ²³⁸U Beam Service

 $(2011/10/19 \sim 2011/12/08)$

CNT-foil

Serviceable time : 3 ~ 4 days 100 times larger than usual carbon foils

Beam intensity fluctuation

This problem was fixed by replacing the power supply of the gyrotron.

Details of 2013 Operations

²³⁸U (2013/4/28 - 5/27)

89.5% in total

¹²⁴Xe (2013/6/07 - 7/01)

91.1% in total

Small troubles remains but availability of 90% has been realized in the fixed energy mode!

Stability of Isochronous Magnetic Fields

Stability of new fRC power supply

Integrated Monitoring System

Structure of monitoring system using lock-in amplifiers

Lock-in amplifiers

R. Koyama et al., Nucl. Instrum. and Meth. A729 (2013) 788-799.

The system monitors RF resonators, magnetic fields, beam bunch signals before and after the accelerators and the strippers

Arrival times of ions at each cyclotron is maintained by the operators with assistance of the integrated monitoring system.

Stability of Beam Intensity

Devices tuned to recover beam intensity are shown.

Summary

We have successfully developed or upgraded

•28-GHz ECRIS

•the new injector RILAC2

•helium gas stripper, air stripper and rotating beryllium disk stripper

bending power of fRC

We have obtained 345A-MeV beams with the intensity of

- •415 pnA for ⁴⁸Ca
- •38 pnA for ¹²⁴Xe
- •15 pnA for ²³⁸U

after the upgrades.

Beam availability has been greatly improved (90%).

Further performance upgrades required in the near future are
to increase the beam intensity of uranium and xenon ions by improving the transmission efficiency of the RIBF accelerator complex
to improve the stability of the RIBF accelerator complex