GANIL OPERATION STATUS AND UPGRADE OF SPIRAL1

O. Kamalou, F. Chautard, L. Maunoury, O. Bajeat, P. Delahaye, M. Dubois, P. Jardin. GANIL, FRANCE

> Cyclotrons 2013 Septembre 20, 2013 Vancouver, BC CANADA

OUTLINE

- Operating modes at GANIL
- Running statistic
- Radioactive beam with <<ISOL>> Method
- > SPIRAL 1 UPGRADE
 - ECR multi-ionization
 - 1+FEBIAD source
 - First tests
 - Charge breeder
- Schedule and organization

Operating Mode at GANIL

Operating Mode at GANIL

Intense Primary beams

2.10¹³ pps Safety limitation reached

Possible improvement

Beam	Imax [μAe]	[pps] <2 10 ¹³	Emax [MeV/A]	Pmax [W] <mark><6kW</mark>	Used with Spiral
¹² C ⁶⁺	18	1.9 10 ¹³	95	3 200	
¹³ C ⁶⁺	18	2. 10 ¹³	80	3 000	X
¹⁴ N ⁷⁺	15	1.4 10 ¹³	95	3 000	
¹⁶ O ⁸⁺	16	10 ¹³	95	3 000	X
¹⁸ O ⁸⁺	17	10 ¹³	76	3 000	X
²⁰ Ne ¹⁰⁺	17	10 ¹³	95	3 000	X
²² Ne ¹⁰⁺	17	10 ¹³	79	3 000	
²⁶ Mg ¹²⁺	20	10 ¹³	82	3 600	X
36 S 16+	11	5 10 ¹²	77.5	1100	X
³⁶ Ar ¹⁸⁺	16	5.5 10 ¹²	95	3 000	X
⁴⁰ Ar ¹⁸⁺	17	6. 10 ¹²	77	3 000	
⁴⁸ Ca ¹⁹⁺	4-5	1.3 10 ¹²	60	600-700	X
⁵⁸ Ni ²⁶⁺	5	1.2 10 ¹²	77	860	
⁷⁶ Ge ³⁰⁺	5	1.2 10 ¹²	60	760	
⁷⁸⁻⁸⁶ Kr ³⁴⁺	7.5	1.4 10 ¹²	70	1200	X
¹²⁴ Xe ⁴⁶⁺	2	2.7 10 ¹¹	53	300	

SPIRAL 1 Operating Mode

4

SPIRAL 1 Operating Mode

Running statistic From 2001 to 2012

Radioactive ion beams with «ISOL» Method

Exotic beams production

ions	W [MeV/u]	[pps]	ion	W [MeV/u]	[pps]
6He	3.8	2.8 10 ⁷	20F	3	1.5 10 ⁴
6He	2.5	3.7 10 ⁷	17Ne	4	4.10 ⁴
6He	5	3.10 ⁷	24Ne	4.7	2.10 ⁵
6He	LIRAT (<34 keV/u)	2.10 ⁸	24Ne	7.9	1.4 10 ⁵
6He	20	5.10 ⁶	24Ne	10	2 10 ⁵
8He	3.5	1.10 ⁵	26Ne	10	3.10 ³
8He	15.5	1.10 ⁴	31Ar	1.45	1.5
8He	15.4	2.5 10 ⁴	33Ar	6.5	3.10 ³
8He	3.5	6.10 ⁵	35Ar	0.43	4.10 ⁷
8He	3.9	8.10 ⁴	44Ar	10.8	2.10 ⁵
140	18	4.10 ⁴	44Ar	3.8	3.10 ⁵
150	1.2	1.7 10 ⁷	46Ar	10.3	2.10 ⁴
190	3	2.10 ⁵	74Kr	4.6	1.5 10 ⁴
200	3	4.10 ⁴	74Kr	2.6	1.5.10 ⁴
200	4	4.10 ⁴	75Kr	5.5	2.10 ⁵
18Ne	7	1.10 ⁶	76Kr	4.4	4.10 ⁶
18F	2.4	2 10 ⁴			

SPIRAL 1 upgrade

One of the main recommendations of scientific advisor comity for existing facility is to extend the radioactive ion beam variety available from the SPIRAL1 facility.

SPIRAL achievements: highlights

Existence of unbound ⁷H using the active target MAYA [1]. 7 elements Searching for signatures of physics beyond Standard Model by measuring the β -v angular correlation parameter in the decay of ⁶He at LPCtrap[2]. Probing the neutron distributions in borromean nuclei from charge IV VIII radii measurement using a laser trap [3] and transfer reactions [4]. He Study of quantum tunneling at the femtometer scale – probing the interplay between intrinsic structure and the reaction dynamics of the Si colliding nuclei around the Coulomb barrier using beams of ^{6,8}He [5]. Ge Ga As Resonant elastic scattering for probing the role of unbound Sn Sb nuclei in explosive combustion of hydrogen - see for instance In Xe [6]. Evolution of N=20 and 28 shell closures far from stability and the emergence of new shell gap at N=16, using neutron rich beams of Ne [7] 2001 - 2008: and Ar[8]. 70 physics articles [1]: M. Caamaño et al, Phys. Rev. Lett. 99 (2007) 062502. 12 PhD Thesis [2]: X. Flechard et al., Phys. Rev. Lett. 101 (2008) 212504. 53 technical articles

- [3]: P. Mueller et al., Phys. Rev. Lett. 99(2007)252501.
- [4]: A. Chatterjee et al., Phys. Rev. Lett. 101(2008)032701.
- [5]: A. Lemasson et al., Phys. Rev. Lett. 103 (2009) 232701.
- [6]: W.N. Catford et al., Phys. Rev. Lett. 104(2010)192501.
- [7]: L. Gaudefroy et al., Phys. Rev. Lett. 97(2006) 092501 and Phys. Rev. Lett. 99, 099202 (2007).
- [8]: F. De Oliveira Santos et al., Eur. Phys. Jour. A 24 (2005) 237-247.

7 PhD thesis

ECR multi-ionization in Nanogan 3

• Highest ionisation efficiencies for gases!

To the cost of universality

1+ FEBIAD source (type VADIS ISOLDE)

two online testes with measured yields
Some technical issues: the coupling between the source and the target is difficult because of thermo-dynamical constraints on the transfer tube

- Non selective source : Mg, Ca, Sc, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ce, As, Se, Al
- On line beam tests: fall of 2010
- But no acceleration by CIME (Q/A too low)

FEBIAD: Forced Electron Beam Induced Arc Discharge

Deduced 1+ intensities 1st test

PRELIMINARY

⁵⁸Ni@75AMeV

From Gamma line intensities at saturation

			Measured 1+	1+ intensity	Efficiency
ISOTOPE	Half-life (s)	Power (W)	intensity	(750W)	/EPAX (%)
38K	456	4	3.8E+04	7.3E+06	2.08E+01
38mK	0.923	4	-	-	
53Fe	510.6	34	6.6E+04	1.4E+06	.07E+00
53mFe	154.8	34	1.4E+04	3.0E+05	2.24E-01
58Mn	3	37	5.7E+04	1.2E+06	
58Cu	3.204	37	4.3E+03	9.0E+04	T
59Cu	81.5	38	7.3E+04	1.5E+06	
60Cu	1422	35	2.5E+03	5.E+04	

Despite the reliability and temperatures issues, the target ion source exhibits performances as good as one could wish! Mostly >10⁵ pps!

Contains: Release efficiency (diffusion + effusion delays) Ionisation efficiency

Deduced 1+ intensities 2nd test

PRELIMINARY

From Gamma line intensities at saturation taken on line³⁶Ar@95AMeV

				1+ intensity (1.5kW) and
		Power	Measured 1+	nominal ionisation
ISOTOPE	Half-life (s)	(W)	intensity	efficiency
23Mg	11.3s	~13	1.73E+03	2.00E+06
25AI	7.18s	~13	2.60E+02	3.00E+05
33CI	2.5s	~13	6.93E+03	8.00E+06
35Ar	1.775s	~13	8.67E+03	1.00E+07
37K	1.226s	~13	1.10E+04	1.27E+07
38K	6.3min	~13	1.30E+04	1.50E+07
38mK	923ms	~13	1.30E+04	1.50E+07

Ionisation efficiency ~10% of the nominal

lack of conditioning time

misbehaving extraction optics
 Monitored with ²⁰Ne and verified with ³⁵Ar (radioactive)

Coupling a charge breeder to a 1+ source

- 1+ source = compact to fit in the cave
- Breeder outside cave = accelerate beams in CIME

Phoenix charge breeder upgrade for the production of pure and intense metallic radioactive ion beams

Improving on *beam purity* •AI plasma chamber and UHV design •Optimized extraction optics

Improving on *capture efficiencies*Remote controlled injection tubeModified HF injection for 2 RF heating

Optimization towards light masses

SIMION ® calculations ongoing

Design of the upgraded charge breeder P. Delahaye, L. Maunoury and R. Vondrasek, NIMA 2012 Latest tests at ANL: up to 9.6% Na⁸⁺ and 17.7% for K¹⁰⁺ R. Vondrasek et al, RSI 2012 15

Schedule and organization

- Production cave: already modified
- Installation of a nuclear ventilation in room 15
 2013 Instruction by MOE and ASN done
 2014 first semester: installation
- FEBIAD:
- Second quarter of 2013: stable beam tests Last run 2013: tests on SPIRAL
- Charge breeder
- Off-line assembly \rightarrow fall of 2013
- Installation: Second semester of 2014
- Commissioning and tests: 2015

Beginning of 2016: upgraded facility is available

Thank you for your attention