SECONDARY PARTICLE DOSE AND RBE MEASUREMENTS USING HIGH-ENERGY PROTON

M. Ghergherehchi, J-S Chai Accelerator & Medical Engineering Lab, Sungkyunkwan University

Dosimetry Techniques:

- Solid state nuclear track detectors
- Emulsion
- Solid Scintillation
- Liquid scintillation
- Gamma spectrometry
- Beta monitoring
- Electrometer or electroscope
- Ionization chambers
- Surface barrier detectors
- Thermoluninescent phosphors
- Electret
- collection

- Advantages of Using Solid State Nuclear track Detectors (SSNTDs)
 - Most of SSNTDs are insensitive to beta or gamma radiations.
 - SSNTDs are insensitive to light, environmental temperature and humidity.
 - SSNTDs are suitable for short / long term and low/high dose measurements.
 - SSNTDs do not require power supply to operate.

When energy levels are sufficiently high, secondary particles with high LET are produced through nuclear interactions.

Track detectors (CR-39, $C_{12}O_7H_{18}$)

track detectors etched with a chemical etched poly allyl diglycol carbonate (commercially known as CR-39) was employed to determine the dosimetric and microdosimetric characteristics

Irradiation at KIRAMS-30 Cyclotron at Jeongup

General Specifications

Type of Accelerated Ions Extraction method Beam Energy(proton) Beam Current(proton) No. of Beam lines CYC13, 16-20 Sep 2013, Vancouver Dual beam Negative Hydrogen Stripper carbon foil 15 ~ 30 MeV Guaranteed 300 uA

available

Irradiation at the national cancer center in South Korea $(E_p: 70-250 \text{ MeV})$

Cyclotron
 Beam Transportation Line
 Gantry Treatment Room
 Fixed Beam Treatment Room

Track detectors

Before etching for checking the exact etching condition one corner was irradiated with ²⁵²Cf and other corner was irradiated by ²⁴¹Am

Magnification of 1000 pixels,
 Field-of-view area :4.71 × 10⁻⁴ cm².

- After irradiation, each part of the CR-39 detectors was etched at 6NaOH at at 70°C
 - The etching time 15 h and removal thickness was 20μm

• 150 MeV

The typical etched tracks of secondary particles registered by CR-39 detector for different proton energies of 72 and 150 and MeV.

V_T :Track Etching Velocity V_B : Bulk Etching Velocity

 $D = d = 2V_B t_1 \sqrt{\frac{V_T - V_B}{V_T + V_B}}$

 $V_{T} \sin \Theta > V_{B}$ $\Theta_{C} = \operatorname{Arc} \operatorname{Sin} V_{B} / V_{T}$ $D = \frac{2V_{B}t\sqrt{(V_{T}^{2} - V_{B}^{2})}}{V_{T} \sin \theta + V_{B}} \quad d = 2V_{B}t\sqrt{\frac{V \sin \theta - 1}{V \sin \theta + 1}}$

Our customized computer program called track counting system which provide typical result shown at blow

Ghergherehchi, et al, Radiation Measurements 50 (2013)

LET spectrometer based on chemically etched

This calibration curve from irradiations of ¹²C to ⁵⁶Fe ions, with LET values in water ranging from 7.9 to 700 keV/µm (Spurny,radiat.Meas.2005)

Integral Dosimetry and Microdosimetry Characteristics

Dose characteristics and clinical radiobiological effectiveness for the particles having LET values higher than 10 keV/ μ m can be obtained from the LET spectra by the following

where dN/dL is the number of tracks in an LET interval, L is the value of the LET and Q (L) is the quality factor corresponding to the value of Land r (L) is the biological weighted function.

Event number LN(L), dose LD(L), and dose equivalent LH92(L) distributions in terms of LET for Ep = 220 MeV.

Proton 150 MeV

Event number LN(L), dose LD(L), and dose equivalent LH92(L) distributions in terms of LET for Ep = 150 MeV.

Proton 72 MeV

Event number LN(L), dose LD(L), and dose equivalent LH92(L) distributions in terms of LET for Ep = 72 MeV.

Dose ratio of the secondary to primary particles for a 1 - Gy entrance dose for different proton energies.

E _P (MeV)	Dose ratio of the secondary to primary particles for 1 - Gy entrance dose at each detector	Dose ratio of the secondary to primary particles for 1 - Gy entrance dose at 220 MeV					
220	2.7	2.7					
150	3.4	4.3					
72	5.4 CYC13, 16-20 Sep 2013, Vancouver	7.4					

Absorbed dose D and dose equivalent H for different proton energies ranging from 9.6 to 220 MeV along with the prediction of the total cross-sections for the constitutive CR-39 material obtained using the Alice code

Energy (MeV)	Total cross section (mb) for ¹ P+ ¹⁶ O	Total cross section (mb) for ¹ P+ ¹² C	Absorbed dose	Dose equivalent	The dose ratio of secondary to primary particles	
9.6	708.1	574.0	296	4270	29.6% (Ghergherehchi,2011, JKPS)	
16.6	559.4	523.6	185	2421	18.5%	
21.9	537.5	436.5	114	1741	11.43%	
26.2	505.7	404.8	85	1402	8.5%	
30.0	470.3	384.7	75	1311	7.5%	
	317.7	254.5	84.7	731	6.2% (spurny 2001)	
72	313.5	251.4	74.2	607	5.4%	
	238.7	189.1	49.3	400	4.3% (spurny 2001)	
150	223.7	176.7	43.7	337	4.1%	
180	205.1	162.0	28.7	292	2.9%	
220	187.6	124.2	27.1	256	2.7%	

The calculated various secondary particles dose by GEANT4 in CR-39 and the comparison of calculated total secondary dose ratio with experimentally obtained values in this work. (Ghergherehchi 2012,Radiation Mesurment)

Proton energy (MeV)	Primary p dose to total ratio %	D dose ratio %	He dose ratio %	O dose ratio %	N dose ratio %	C dose ratio %	B dose ratio %	Be dose ratio %	Li dose ratio %	³ H dose ratio %	α dose ratio %	p dose ratio %	Total secondary dose ratio by GEANT4 %	Experimentally total secondary dose ratio %
9.6	99.9	0.00003	-	0.02	0.00003	0.02	0.0003	-	-	-	0.0008	0.003	-	29.6
16.6	78.08	0.005	0.0001	0.31	0.11	0.38	0.004	-	0.0004	-	1.02	0.07	-	18.5
21.9	77.92	0.11	0.0004	0.26	0.16	0.50	0.004	0.001	0.0006	0.0003	2,44	0.08	4.57	11.43
26.2	79.00	0.42	0.05	0.22	0.10	0.88	0.03	0.002	0.0007	0.0009	2.50	0.06	5.41	8.5
30	80.49	0.58	0.20	0.21	0.07	1.09	0.13	0.02	0.02	0.02	1.73	0.04	5.10	7.5
70	88.55	0.18	0.14	0.17	0.14	0.73	0.29	0.17	0.13	0.03	1.02	0.03	3.44	6.2
72	88.73	0.17	0.14	0.17	0.14	0.73	0.29	0.18	0.13	0.03	1.03	0.03	3.43	5.4
150	92.4	0.17	0.16	0.12	0.12	0.57	0.32	0.18	0.17	0.05	0.96	0.03	3.08	4,1
180	92.9	0.18	0.18	0.10	0.12	0.53	0.33	0.19	0.18	0.06	1.01	0.03	3.14	2,9
220	93.45	0.19	0.19	0.10	0.11	0.52	0.33	0.19	0.2	0.06	0.99	0.02	3.1	2.7

The distributions absorbed doses for various depths in CR-39 as L*D(L) for a primary proton energy of 220 MeV

RBE values at various residual proton energies

- Nanodosimetry with high energy proton
- Correlation between this result of l*D(L),L*H92(L) with prediction of the Alice code
 CYC13, 16-20 Sep 2013,

REB calculation based on the microdosimetry method for 220MeV proton beams.

Depth in CR-39(mm)	69	115	143	179	205	250
E _{mean} (MeV)	180	150	130	100	72	Bragg
D _{point} (mGy)	225	179	147	98	75.3	3.1
D _{LET} (mGy)	3.4	4.1	5.5	6.8	7.4	2.7
D _{LET} /D _{point} %	1.51	2.29	3.74	7.09	9.8	87.09
R _{LET} (mGy)	6.052	6.84	8.52	9.25	10.28	3.86
RBE	1.011	1.015	0.020	1.025	1.038	1.37

