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Abstract
Starting from the collisionless Vlasov equation, we de-

rive two simple coupled two-dimensional partial differ-
ential equations describing the radial-longitudinal beam
vortex motion associated with space charge effects in
isochronous cyclotrons. These equations show that the vor-
tex motion can be intuitively understood as the nonlinear
advection of the beam by the E × B velocity field, where
E is the electric field due to the space charge and B is the
applied magnetic field. The partial differential equations
are also formally identical to the two-dimensional Euler
equations for a fluid of uniform density. From this analogy,
we explain why elongated beams develop spiral halos and
a stable round core while round beams are always stable.
Solving the coupled equations numerically, we find good
agreement between our model and Particle-In-Cell simula-
tions.

INTRODUCTION
Modern applications of cyclotrons in fields such as ma-

terials science, nuclear medicine and national security re-
quire high quality beams at high intensities. In order to de-
sign cyclotrons that are capable of producing such beams
reliably, one needs to be able to understand and predict the
effects of space charge forces on beam evolution. Because
of the complexity of beam dynamics and of the magnetic
field geometry in modern machines, the theoretical work is
now largely numerical.

Recently, very sophisticated numerical tools based on
the Particle-In-Cell (PIC) method have been developed to
design modern cyclotrons and analyze experiments [1, 2,
3]. Codes based on the PIC approach are very intuitive
and can be conveniently parallelized for large-scale com-
putations. These are critical points given the complexity
of the problem at hand. The evolution of charged particle
beams in high intensity cyclotrons is indeed described by
the seven-dimensional Vlasov-Poisson system in compli-
cated geometries [1]. However, there are also drawbacks
with direct PIC simulations of the exact Vlasov-Poisson
system. First, precisely because of the conceptual simplic-
ity of the PIC formulation, it often does not provide insights
on the basic phenomena involved in the dynamics until one
runs the simulations and extracts information from the nu-
merical results. More importantly, the conventional PIC
method is subject to difficulties associated with statistical
noise, which require the simulation of a very large num-
ber of particles to bring the statistical uncertainty to an ap-
propriately low level. Accurate fully self-consistent PIC
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simulations of beam dynamics in modern cyclotrons are
thus very computationally intensive [1]. While these high
performance numerical tools are very valuable for in-depth
calculations, the computational times – measured in hours
– are impractical for fast scoping studies of novel designs
and for the fast interpretation of results during experimen-
tal runs.

In a wide class of cyclotrons, space charge forces are im-
portant because of their cumulative effect after many turns,
but they only slightly disturb the single-particle dynam-
ics on a given revolution. For these machines, the quasi-
periodicity of the single-particle motion can form the basis
for an averaging procedure that reduces time resolution re-
quirements and the dimensionality of the Vlasov-Poisson
problem. Adam relied on this fact to develop the success-
ful two-dimensional PIC code PICS based on the “Sphere
Model” [4]. A very similar averaging procedure known un-
der the name gyrokinetics (e.g. [5]) is also succesfully used
in plasma physics for accurate and tractable simulations of
fusion and astrophysical plasmas [6, 7, 8, 9].

This paper belongs to the early stage of an ongoing
project to derive averaged equations for the Vlasov-Poisson
system in modern cyclotrons, and develop a continuum ki-
netic code to solve these equations and study space-charge
effects. While we will treat the general case in future work,
we focus here on the particular regime in which the beam
is almost laminar. We show that in this regime the averag-
ing procedure can be used to obtain a reduced set of fluid
equations describing the non-relativistic radial-longitudinal
beam dynamics due to space charges. These fluid equations
have the remarkable property to be isomorphic to the two-
dimensional Euler equations for a fluid of uniform den-
sity. This analogy is very powerful to understand the stabil-
ity of given beam density distributions, and explain beam
spiraling [1, 4] and breakup phenomena [10] observed in
isochronous cyclotrons.

REDUCED FLUID MODEL FOR THE
BEAM

Starting Model
In this work, we make a number of simplifying assump-

tions that we will relax in future work. These assumptions
allow us to make substantial analytic progress, and as we
will show below, they lead to a model than contains all the
key physics describing beam spiraling and beam breakup.

In order to compare our results with previous numer-
ical results [1, 4], we focus on the case of a coasting
beam. We restrict our study to the two-dimensional radial-
longitudinal plane, and consider a non-relativistic beam.
With these three restrictions in mind, we can consider the
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simple case in which the cyclotron magnetic field is ho-
mogeneous. We write B = Bez , where B is a constant
and ez is the unit vector along the vertical direction. For
the simplicity of the notation, we apply our analysis to a
proton beam, but all the results can be easily modified for
particles with a different charge and a different mass. Fi-
nally, as is common [1] and justified given the low density
of cyclotron beams, we neglect binary collisions between
protons in the beams. The evolution of the proton distri-
bution function is therefore given by the Vlasov equation,
which is the starting point of our analysis. The first step
is to derive fluid equations for the beam from the Vlasov
equation.

We carry out our analysis in a frame rotating with the
beam. In this frame, the electrostatic approximation holds
so that the electric field due to the space charges can be
written as E = −∇φ. The magnetic self fields can be
neglected since we are in the non-relativistic limit. Taking
the first two velocity moments of the Vlasov equation [11],
we then get the following two fluid-like equations for the
evolution of the beam, in non-dimensionalized form [12]

dn

dt
+ n∇ · v = 0 (1)

dv

dt
+ v × ez = −δ2

(
∇φ+

α2

n
∇ ·P

)
(2)

where φ is computed from the non-dimensionalized Pois-
son equation

∇2φ = −n (3)

In Eqs. 1 and 2, n(r, t) is the normalized beam density,
v(r, t) its normalized velocity, and P(r, t) its normalized
pressure tensor. d/dt ≡ ∂/∂t + v · ∇ and δ2 = ω2

p/ω
2
c

where ωp is the plasma frequency at the peak beam den-
sity, ω2

p = N0e
2/mε0. α is defined by α2 = T0/ma

2ω2
p =

λ2D/a
2 where λD is the Debye length. N0 is the peak den-

sity of the beam, T0 its peak temperature, and a its mean
radius. δ2 represents the strength of space-charge effects
relative to the confining magnetic force, while α2 repre-
sents the strength of temperature effects relative to space-
charge effects.

Many cyclotrons operate in the regime δ2 � 1. In this
regime, the motion of the charged particles consists of the
periodic betatron motion plus a small perturbation due to
space charge forces. We will use this fact and perturba-
tion theory to average Equations 1, 2 and 3 over the quasi-
periodic particle orbits and derive simplified fluid equations
that capture the slow, betatron-averaged evolution of the
beam under the effect of space charges. Before doing so,
we need a closure for the fluid-like equations. Here too the
smallness of δ can be used, in order to derive a convenient
approximation for the pressure term in Eq. 2. This is what
we do in the next section.

Closing the Fluid Equations
The system formed by Equations 1, 2 and 3 is not closed

since it does not include a prescription on how to evolve

the pressure tensor P. In general, P can only be computed
by directly solving the Vlasov equation. This is the reason
why complex seven dimensional numerical solvers are usu-
ally required. In order to make further analytical progress,
we instead assume that the ratio of the amplitude of the be-
tatron oscillations over the mean beam radius is of order
the small parameter δ. This is equivalent to saying that the
beam is mismatched but that the departure from the lami-
nar regime is small. When this is the case, it can be shown
by ordering the different terms in the Vlasov equation [12]
that to lowest order in δ the pressure tensor can be written
as

P = p⊥I + (pz − p⊥)ezez (4)

where I is the unit tensor, and ⊥ denotes the plane perpen-
dicular to ez , i.e. the radial-longitudinal plane. With this
particular form of the pressure tensor, the only contribution
of ∇ · P that is not in the ez direction is ∇p⊥. Our fluid
model now takes the following form

dn

dt
+ n∇ · v = 0 (5)

dv

dt
+ v × ez = −δ2

(
∇φ+

α2

n
∇p⊥

)
(6)

∇2φ = −n (7)

In principle the system of Equations 5 – 7 is still not
closed because it does not contain an equation for the evo-
lution of p⊥. However, one of the remarkable results of
the averaging procedure in the next section is that such an
equation is in fact unnecessary. It turns out that when the
pressure term can be written as a gradient, it vanishes ex-
actly from the equations for the evolution of the beam on
the space-charge time scale.

Averaging over the Betatron Period
The averaging procedure is based on the fact that the be-

tatron time scale is shorter than the space-charge time scale
by the small factor δ2, and is carried out as follows. First,
one formally separates the time dependence of any quantity
Q according to

Q(r, t) = Q(r, t0, t2, . . .) = Q(r, t, δ2t, . . .) (8)

where t0 corresponds to the betatron time scale and t2 to
the slower space-charge time scale. With this formal scale
separation we have

∂Q

∂t
=
∂Q

∂t0
+ δ2

∂Q

∂t2
+O(δ4) (9)

It is then convenient to define the averaging operation over
the betatron time scale as follows

〈Q〉 ≡ 1

2π

∫ 2π

0

Qdt0

and separate any quantity Q into the sum of a rapidly oscil-
lating part Q̃ due to the betatron oscillations, and a slowly
evolving part Q̄ due to space-charge and thermal effects:

Q(r, t0, t2, . . .) = Q̃(r, t0, t2, . . .) + Q̄(r, t2, . . .) (10)
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By construction 〈Q̃〉 = 0 and Q̄ does not depend on the
fast time scale t0.

The next step in the analysis is to expand n, v, p⊥ and
φ in powers of δ. The ordering that is consistent with the
assumption that the departure from the laminar regime is
small is

n = n̄0 + δ (ñ1 + n̄1) + δ2 (ñ2 + n̄2) +O(δ3) (11)
p⊥ = p̄⊥0 +O(δ) (12)
φ = φ̄0 +O(δ) (13)

v = δṽ1 + δ2 (ṽ2 + v̄2) +O(δ3) (14)

We then introduce these expansions into Equations 5 – 7.
We start with Poisson’s equation, which we only need to
lowest order in δ:

∇2φ̄0 = −n̄0 (15)

We continue with Eq. 5. The first nontrivial contribution
to this equation arises in first order in δ:

∂ñ1
∂t0

+∇ · (n̄0ṽ1) = 0 (16)

Equation 16 describes the evolution of the beam density (to
lowest order) on the fast time scale, under the effect of the
betatron oscillations. To second order in δ, Eq. 5 is

∂ñ2
∂t0

+
∂n̄0
∂t2

+∇·[(ñ1 + n̄1) ṽ1 + n̄0 (ṽ2 + v̄2)] = 0 (17)

The evolution of the beam density on the space charge time
scale is obtained by averaging Eq. 17 over the betatron time
scale. We find

∂n̄0
∂t2

+∇ · (〈ñ1ṽ1〉+ n̄0v̄2) = 0 (18)

Equation 18 is precisely the equation we were looking for:
it determines the evolution of the beam density due to space
charge forces and the averaged effect of the betatron mo-
tion. The evolution of ñ1 appearing in Eq. 18 is given by
Eq. 16. However, we still need equations for ṽ1 and v̄2,
which we get by also expanding the momentum equation
order by order in δ. The first nontrivial contribution comes
in first order in δ:

∂ṽ1

∂t0
+ ṽ1 × ez = 0 (19)

This is the desired equation for ṽ1, simply describing the
betatron motion. In order to obtain an equation for v̄2, we
take the momentum equation to second order in δ and av-
erage it over t0. We find

v̄2 = 〈ṽ1 · ∇ṽ1〉 × ez +∇φ̄0 × ez +
α2

n̄0
∇p̄0 × ez (20)

All the relevant equations have now been derived. From
Eqs.16, 19 and 20 we can derive expressions for ñ1, ṽ1 and
v̄2 in terms of zeroth order quantities and initial conditions,
which we can then insert in Eq. 18 to obtain the desired

equation for the evolution of the beam density on the space-
charge time scale. The details of the calculation are slightly
tedious and can be found in [12]. The final result is the
following coupled system obtained from Eqs. 15 and 18:

∂n̄0
∂t2

+∇φ̄0 × ez · ∇n̄0 = 0 (21)

∇2φ̄0 = −n̄0 (22)

Note that the pressure term is absent from these equations.

Isomorphism with Two-dimensional Incompress-
ible Euler Equations

Equations 21 and 22 have a simple interpretation: they
describe the advection of the beam in the E × B veloc-
ity field, where E = −∇φ is the electric field due to the
space charges [12]. They are remarkable in that they are
formally identical to the two-dimensional Euler equations
for a fluid with uniform density. In the Euler case, the vor-
ticity plays the role of the density n, and the stream func-
tion for the flow plays the role of the electrostatic potential
φ. Because n is always positive, the analogy is restricted to
two-dimensional fluid vortex dynamics with positive vor-
ticity. The analogy gives a robust theoretical framework
to the concept of beam vortex motion first pointed out by
Gordon [13]. A similar analogy was identified a long time
ago regarding the two-dimensional dynamics of electrons
magnetically confined in a plasma column [14] (and refer-
ences therein). This is not surprising since Eqs. 5 – 7 are
identical to those describing the evolution of an isotropic
electron beam in the plane perpendicular to the homoge-
neous confining magnetic field. Our derivation generalizes
these results by showing that the analogy even holds for fi-
nite temperarure beams. In other words, with our ordering
betatron oscillations have no effect on the evolution of the
beam density on the slow time scale, as they average out.

RADIAL - LONGITUDINAL BEAM
DYNAMICS

The isomorphism between Eqs. 21 and 22 and the Eu-
ler equations is not only an interesting curiosity; it also
suggests that well established results in fluid dynamics
can be advantageously translated into the beam framework
and help us understand and predict beam dynamics in cy-
clotrons under the effect of space charges.

Scaling with Beam Density
The first thing to observe is that δ2 only appears in

Eqs. 21 and 22 hidden in the time parameter t2. That means
that for a given magnetic field, beams with different densi-
ties (or equivalently different currents) will evolve exactly
in the same way, only at a different rate. In other words, the
phenomena will be identical, but the growth rates grow in
time like δ2, i.e. they scale linearly with the beam density
(i.e. the beam current). This is precisely what is observed
during beam breakup in the Small Isochronous Ring (SIR)
at Michigan State University [10]: the number of clusters in
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which the beam breaks is independent of the beam current,
but the growth rate scales linearly with the beam current.
We will shortly return to beam breakup within the frame-
work of our model. First, we discuss the stability of round
beams.

Round Beams
By choosing polar coordinates (r, θ) centered at the

beam centroid, one can see that an initially round density
distribution, i.e. satisfying n̄0(r, 0) = n̄0(r), trivially sat-
isfies Eqs. 21 and 22 and thus remains round for all time.

A more interesting question to ask is what happens to
round density distributions to which one adds small am-
plitude perturbations on the surface. From fluid dynamics
theory, one knows that if the beam density profile is mono-
tonically decreasing, the surface modes are stable [14] (and
references therein). This explains why round beams with
such density profiles are invariably found to be long lived
in experiments and simulations [1, 12]. The situation is
different when the density profile is hollow: the surface
perturbations are then Kelvin-Helmholtz unstable [14].

Elliptic Beams
The simplest case to consider for elliptic beams is that

of a uniform density distribution with a sharp edge. This
case was studied extensively in the context of fluid dy-
namics [15] (and references therein), in which it is known
as a “Kirchhoff vortex”. One can show that for any ra-
tio a/b of the semi-major axis a and semi-minor axis b
such a vortex rotates with the uniform rotation frequency
ω = ab/(a + b)2. Furthermore, if a/b < 3 the ellipse
is stable to edge density perturbations, while for a/b > 3
the ellipse is unstable to edge density perturbations. As
the ratio a/b increases, instability thresholds for pertur-
bations with shorter and shorter wavelengths are reached
[15]. Such instabilities, sometimes called unstable dio-
cotron modes [14], can lead to beam breakup [15]. This
is what we show in Figure 1, in which we used the numer-
ical method suggested in [15] to study the evolution of an
elliptic beam with aspect ratio a/b = 6.5 and uniform den-
sity, to which one added small surface perturbations. The
perturbation corresponds to an m = 4 mode, i.e. it has 4
full periods along the circumference of the ellipse, and we
chose δ2 = 0.2 for the simulation.

Note that strictly speaking, it can be shown that Eq. 21
does precisely not allow beam breakup, however thin fila-
ments may be. However, under the effect of the beam in-
stability, strong filamentation occurs and the filaments are
so thin that the assumptions used to derive Eq. 21 are not
justified anymore in these regions. Specifically, viscosity
has to be included at these small scales, and one expects
viscosity to allow the beam to break up in two pieces that
each have a stable aspect ratio a/b < 3.

The situation is more complicated for more realistic el-
liptic beams with smoother density profiles [16] (and ref-
erences therein). Unlike the Kirchhoff case the rotation is
not uniform, and under the effect of differential rotation

Figure 1: Evolution of a coasting elliptic beam with uni-
form density as determined by Eqs. 21 and 22. The beam’s
transport direction is in the negative x direction, the aspect
ratio of the ellipse is a/b = 6.5, and δ2 = 0.2. The numer-
ical method used for this simulation is described in [15].
We see that the small m = 4 perturbation grows and leads
to beam breakup at turn 40.

such beams develop low density filaments on the exterior
of the beam, even when a/b < 3. These filaments grad-
ually wrap around the core of the beam, and interactions
between the filaments and the beam core lead to axisym-
metrization of the entire beam. This phenomenon is well
understood in the context of fluid dynamics, and has been
shown to be robust for reasonably smooth profiles [17].
Unsurprisingly, this is what we obtain in numerical sim-
ulations, as we show in Figure 2, which we obtained for
δ2 = 0.2 and a Gaussian density distribution of the form
n(x, y) = exp(−x2/2σ2

x − y2/2σ2
y) with 2σx = 9 and

2σy = 3.5. The last plot in Figure 2 shows the formation
of a stable round beam core and a low density halo com-
ing from the filaments that have separated from the core
because of numerical viscosity. This is in agreement with
previous PIC simulations of analogous situations [1, 4]. We
showed elsewhere [12] that for the same beam parameters
as in [1] and [4], we obtain very good agreement with these
simulations. This is the sign that the details of the magnetic
geometry and three-dimensional effects do not play a sig-
nificant role, and the essential elements of the dynamics are
contained in Eqs. 21 and 22.
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Figure 2: Evolution of a coasting elliptic beam with the
Gaussian density profile given in the main text, as deter-
mined by Eqs. 21 and 22. The beam’s transport direction
is in the negative x direction, δ2 = 0.2, and the dark blue
contour line corresponds to 10% of the maximum density.
The numerical method used for this simulation is described
in [12]. We see the formation of a round beam core and a
low density halo after about 40 turns.

CONCLUSION – FUTURE WORK
In many cyclotrons, the time scale associated with beta-

tron oscillations is much shorter than the time scale associ-
ated with space charge effects. We have used an averaging
procedure based on this fact to derive two simple fluid-like
equations for the radial-longitudinal dynamics of a coast-
ing quasi-laminar beam under the effect of space charges
in a uniform magnetic field. These equations describe the
advection of the beam in the E×B velocity field, where E
is the self electric field. Even though the bunch has a finite
temperature, pressure terms do not appear in the equations.

The equations describing the vortex motion are isomor-
phic to the two-dimensional Euler equations. This means
that known results in fluid dynamics on the behavior of iso-
lated vortices can be directly interpreted in the language of
beam dynamics in cyclotrons. In particular, round beams
with monotonically decreasing density profiles are stable
to finite perturbations. Elliptic beams with smooth, mono-
tonically decreasing density profiles are subject to spiral-
ing and “axisymmetrization” [17]. Elliptic bunches with

too high aspect ratios break into smaller bunches due to
Rayleigh’s inviscid shear instability. All these known re-
sults are confirmed by our numerical simulations, which
are in good agreement with PIC simulations.

In future work, we will consider the role of accelerating
gaps in this vortex motion. It might indeed be possible,
when desirable, to tailor the accelerating electric field in
such a way that it counters the natural spiraling of elon-
gated beams. We will also allow large departures from the
laminar regime. The amplitude of the betatron oscillations
then determines the size of the bunch, and the problem has
to be treated with kinetic equations in phase space instead
of the fluid-like equations derived in this work. Solutions
will have to be obtained from numerical simulations, but
we still expect the averaging procedure to lead to substan-
tial computational savings. Eventually we plan on includ-
ing three-dimensional effects and exact magnetic field ge-
ometries.
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