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Abstract

Serpentine acceleration is typified by fixed radio fre-

quency, fixed magnetic field and a near (but not)

isochronous lattice, radial motion of the orbit, and two

or more reversals of the motion in RF phase. This was

discovered[1] in 2003 for linear non-scaling FFAGs in the

relativistic regime. In 2013, Kyoto University School of

Engineering[2] pointed out that serpentine acceleration is

possible also in scaling FFAGs and may span the non-

relativistic to relativistic regime. As a function of two key

parameters, field index and synchronous energy, this paper

shows how to optimize the extraction energy and the volt-

age per turn for the scaling case. Optimization is difficult,

and typically leads to poor performance: either extreme

voltage or small acceleration range. Nevertheless, designs

with credible acceleration parameters can be obtained; and

indicative examples are presented herein.

THEORY

Let us contrast the FFAG against the synchrotron. In the

latter, the properties of a general particle w.r.t. synchronous

are kept (almost) constant by ramping the magnetic field.

The ”synchronous energy” is a function of time and there

is a single orbit. The motion about this is given in power

series expansion in small quantities in the longitudinal co-

ordinates momentum P or total energy E. Contrastingly, in

a scaling FFAG, any orbit and energy can be used to define

the synchronous reference. Due to the remarkable proper-

ties of the magnet lattice, the general particle motion can

be written in absolute coordinates. In other words, because

the momentum compaction is a global property of the lat-

tice, independent of any selected reference energy, we have

no need of power series expansions in small deviations.

In the scaling FFAG, the magnet field has the form:

Bz(R, z = 0) = (R/R0)
k (1)

where k > 0 is the field index. The general orbit radius

is given by R/Rs = (P/Ps)
α where α = 1/(1 + k) < 1

is solely a property of the lattice. It follows that revolution

period T is given by

T/Ts = (E/Es)(P/Ps)
(−1+α) = (βs/β)[(βγ)/(βsγs)]

α .
(2)

Here γ is the relativistic kinematic factor, E = E0γ and

E0 = m0c
2 is the rest mass energy. We define T ≡ T (γ),

Ts ≡ T (γs) and Tt ≡ T (γt) where Es = E0γs is a syn-

chronous energy and Et = E0γt is the transition energy.

One may eliminate β = v/c in favour of γ. As the basis

for estimations, useful approximations (in the limit γ ≫ γs
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Figure 1: Revolution period versus energy (γ) for α = 1/2

(blue), 1/4 (red), 1/8 (yellow), 1/16 (green).

and α ≪ 1) are T/Ts ≈ βs[γ/(βsγs)]
α; we set equal T/Ts

to unity and solve for γ ≈ γs/β
k
s .

Figure 1 shows T/Tg curves as a function of γs for a

variety of α. The curves are ”U” or ”V”-shaped. γ(T )
is a double valued function: to each value of T belongs

two values of γ. Each curve have a minimum which de-

fines the transition energy. Solving ∂(T/Ts)/∂γ = 0,

one finds γt = 1/
√
α. All normalized curves T/Tg =

(T/Ts)/(Tg/Ts) for a particular value of α have the iden-

tical shape, independent of γs.

For energy less than the transition value, the revolu-

tion period behaves as if dominated by changing particle

speed; and above transition behaves as if dominated by

path length. If k is sufficiently large and γt sufficiently

high, this apparent behaviour persists even in the relativis-

tic regime. The difficulty is of course getting k sufficiently

large without compromising the transverse optics. Con-

trastingly, using moderate values of field index produces a

machine which can in principle cover the transition from

non-relativistic to relativistic - with constant RF.

For brevity, let γs1 ≡ γ1 and γs2 ≡ γ2 be two energies

having the same revolution period; there is a continuum

of such doublets. We shall adhere to the convention that

γ1 < γt < γ2. A certain doublet is chosen to be the syn-

chronous reference when we set the radio frequency (RF)

to be co-periodic with the orbit period T (γ1) = T (γ2).
Once this is chosen E1, E2 become fixed points of the mo-

tion. Both values of the synchronous Es are equally valid!

It is a little arbitrary, but we choose to work with the lower

Es1 because it exists in the narrow range 1 < γs1 < γt.

The general features of the T/T g curves in Fig. 1 are

a very steep rise as γ → 1, and a long slow ramp for

γ ≫ γt. When selecting reference doublets, this has the

consequence that as γ1 → 1, so γ2 → ∞. Thus the range

of acceleration is unbounded. But this range is illusory, and

corresponds to a linac-like regime with prodigious voltage

requirement.
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Figure 2: Energy (γ) versus RF phase (φ); case 1 (upper)

and case 2 (lower)

Hamiltonian

H(E,P, φ) ≡ −Eh+ h(PPs)
(P/Ps)

α

Es(1 + α)
+

eV cosφ

2π
.

(3)

Because of the FFAG scaling property, the Hamiltonian is

invariant whether we use E1 or E2 for the synchronous en-

ergy. We set h times their common revolution frequency

equal to the radio frequency, where h is the harmonic num-

ber. These two energies are either side of transition; so,

during acceleration, the direction of phase slip for the en-

tire beam reverses twice.

Our task would appear to be to maximize the accelera-

tion range for a given value of the voltage per turn V . Fig-

ures 2,5 show examples of phase space contours. Serpen-

tine acceleration in the S-shape channel between two RF

buckets offset in energy can be greater than the range (bot-

tom to top) within a single RF bucket. We take the range

to be formed of the sum of three phase space arcs: (i) from

the injection energy Ei to the first synchronous energy E1;

(ii) a path between E1 and E2; and (iii) from the second

synchronous energy to the extraction energy Ex.

Minimum Voltage

The condition to connect the two fixed points E1 and E2

by a phase space path of zero width is obtained by equating

the two Hamiltonians H(E1, P1, π) = H(E2, P2, 0) and

solving for voltage per turn:

eV0

E0
= πh

(γ2 − γ1)(γ1γ2α− 1)

γ1γ2(1 + α)
. (4)

This is a very significant relation. If αγ1γ2 ≫ 1 this cor-

responds to acceleration in a linac-like regime (case 1) in

which ∆γ/γt ≫ 1 and eV0/E0 → (γ2−γ1)απh/(1 + α).
This is a very few turn acceleration regime, and there is

little point employing an FFAG ring unless the particles

are very short lived. The required voltage is prodigious:

order the rest mass energy per turn; this may be accept-

able for leptons but less so for hadrons. Contrastingly,

if αγ1γ2 → 1 then V → 0. In principle, this implies

∆E/eV → ∞; but ∆γ/γt → 0. This corresponds to

acceleration in a ring-like regime (case 3), with tiny volt-

age and many turns but with a small range. Neverthe-

less, by fine tuning of parameters, this feature may be

exploited to give a limited multi-turn acceleration (cases

2,4,5). αγ1γ2 = 1 has the single solution is γ1γ2 = γt.
For all other values such that T (γ1) = T (γ2), αγ1γ2 > 1
and rises progressively rapidly because γ2 increases more

quickly than γ1 falls. Clearly, small α is advantageous. The

phase acceptance opens from zero to cosφ = [2V0/V −1].

Acceleration Range

The extraction energy is obtained by equating

H(Ex, Px, π) = H(E2, P2, 0), writing Ex = E2 + δEx,

and solving for the increment

δE2
x ≈ (2V/πh)/[+1/E2 − E2/P

2
2 (1− α)]

The injection energy is obtained by equating

H(Ei, Pi, 0) = H(E1, P1, π), writing Ei = E1 − δEi,

and solving for the increment

δE2
i ≈ (2V/πh)/[−1/E1 + E1/P

2
1 (1− α)]

Typically δEi ≪ δEx: δEi ∼ P1c
√
2 and δEx ∼

E2

√
2. The energy range of the machine is

∆E = (Ex − Ei) ≈ (E2 − E1) + δEi + δEx ∼ 2E2

which is expressible solely in terms of E1, E2. But E2

is expressible in terms of E1: E2(E1) is the solution of

T (E1) = T (E2). Hence there is an expression for the

energy range in terms of E1, V, α.

Figure 3 shows the normalized acceleration range

∆E/Et ≡ ∆γ/γt (red), the voltage eV0/E0 (yellow), and

∆E/eV0 (blue) which is roughly the number of turns, as

a function of γs1 for a particular α (case 4). As γs → 1
the range becomes unbounded; and as γs → γt the range

shrinks to zero. The foregoing remarks have prepared us

for this. Contrary to expectations, ∆E/eV is not a suitable

figure of merit upon which to base optimization. While

∆E/eV rises, the acceleration range falls dramatically; the

voltage per turn falls even more precipitously. These be-

haviours are common to all values of α.

OPTIMIZATION

We know that γs1 → 1 (large range, large voltage, few

turns) and γs1 → γt (small range, tiny voltage, many

turns) are both poor choices for the synchronous energy.

But one may speculate that useful working points exit be-

tween these extremes. Our approach is to take combina-

tions [γ1, γ2] which satisfy T (γ1) = T (γ2) exactly, and
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Figure 3: Range per volt (∆E/eV0)/10 (blue), total range

∆E/Et (red), and minimum voltage eV0/E0 (yellow).

Figure 4: Normalized range (left) and required voltage

(right) as function of α, γs1. Range of α = [0.1, 0.5].

roughly satisfy γ1γ2 ≈ γ2
t . The optimization amounts to

scanning α, γs1.

Figure 4 shows that maximizing the energy range and

minimizing the voltage are contradictory efforts. Thus one

must choose, for given index α, either the range and accept

the voltage, or place a limit on voltage per turn and accept

the energy range. Alternatively, for given range and volt-

age values one may search for the (α, γs) combination that

leads to the largest value of α (i.e. smallest value of k) and

hence the easiest-to-realize magnetic lattice.

Figure 4 exemplifies the challenge. Let ρ, ν be target val-

ues. Optimization corresponds to finding the intersection of

the two surfaces: (∆γ/γt)/ρ ≥ 1 and (eV0/E0)/ν ≤ 1 in

the (α, γs1) plane, subject to greatest α.

Examples

We present five examples, each with different design ob-

jectives (ρ, ν). The first case is linac-like, with large range

and voltage. The third case is ring-like, with small volt-

age and many turns. The fifth case is a toy accelerator that

spans the Newtonian to relativistic region. The second and

fourth cases are intermediate with similar number of turns,

but with opposing tendency of α and eV0/E0.

case α γs1 γt ∆E/Et ∆E/eV0 eV0/E0 ∆γ γs2 γinj
1 0.093567 1.6502 3.2692 10. 16.35 2.0 32.38 14.77 1.0

2 0.134416 2.0249 2.7276 2.0 36.37 0.150 5.462 4.419 1.3061

3 0.137074 2.42703 2.7010 1.0 90.03 0.030 2.699 3.304 1.7683

4 0.312317 1.5461 1.7894 1.0 35.79 0.050 1.7885 2.2788 1.2079

5 0.563233 1.16276 1.3325 0.750 24.98 0.040 1.000 1.64715 1.0269

Figure 5: Energy (γ) versus RF phase (φ); case 2 (upper)

and case 5 (lower).

CONCLUSION

The scaling FFAG proves to be a versatile platform for

exploiting serpentine acceleration. However, the perfor-

mance is generally poor: either the voltages are large and

the turns are few, or the voltages and acceleration range are

small. In either case, other accelerator types (linac and cy-

clotron, respectively) would be more effective. Moreover,

there is no obvious figure of merit upon which to base op-

timization. Nevertheless, careful optimization (based on

controlling αγs1γs2) can produce intermediates cases with

credible parameters that have the appeal of acceleration

over the Newtonian (γ ≈ 1) to relativistic regime (γ ≫ 1).
Note, these conclusions do not apply to scaling FFAGs with

swept RF; they are a class distinct from the considerations

above.
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