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Abstract

Serpentine acceleration is typified by fixed radio fre-
quency, fixed magnetic field and a near (but not)
isochronous lattice, radial motion of the orbit, and two
or more reversals of the motion in RF phase. This was
discovered[1] in 2003 for linear non-scaling FFAGs in the
relativistic regime. In 2013, Kyoto University School of
Engineering[2] pointed out that serpentine acceleration is
possible also in scaling FFAGs and may span the non-
relativistic to relativistic regime. As a function of two key
parameters, field index and synchronous energy, this paper
shows how to optimize the extraction energy and the volt-
age per turn for the scaling case. Optimization is difficult,
and typically leads to poor performance: either extreme
voltage or small acceleration range. Nevertheless, designs
with credible acceleration parameters can be obtained; and
indicative examples are presented herein.

THEORY

Let us contrast the FFAG against the synchrotron. In the
latter, the properties of a general particle w.r.t. synchronous
are kept (almost) constant by ramping the magnetic field.
The ”’synchronous energy” is a function of time and there
is a single orbit. The motion about this is given in power
series expansion in small quantities in the longitudinal co-
ordinates momentum P or total energy E. Contrastingly, in
a scaling FFAG, any orbit and energy can be used to define
the synchronous reference. Due to the remarkable proper-
ties of the magnet lattice, the general particle motion can
be written in absolute coordinates. In other words, because
the momentum compaction is a global property of the lat-
tice, independent of any selected reference energy, we have
no need of power series expansions in small deviations.

In the scaling FFAG, the magnet field has the form:

B.(R,z =0) = (R/Ro)" (1)

where £ > 0 is the field index. The general orbit radius
is given by R/Rs = (P/P;)* wherea = 1/(1 + k) < 1
is solely a property of the lattice. It follows that revolution
period T is given by

T/Ts = (B/Es)(P/P)\ ) = (B8:/B)(67)/ (Bsvs)]” -

2
Here ~ is the relativistic kinematic factor, £ = FEy~vy and
Ey = moc? is the rest mass energy. We define T = T'(v),
Ts = T(vs) and Ty = T'(7y:) where B, = Eyys is a syn-
chronous energy and F; = FEjy~; is the transition energy.
One may eliminate 8 = v/c in favour of . As the basis
for estimations, useful approximations (in the limit v > ~;
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Figure 1: Revolution period versus energy () for a = 1/2
(blue), 1/4 (red), 1/8 (yellow), 1/16 (green).

and o < 1)are T/Ts ~ Bs[v/(Bss)|*; we setequal T/ T
to unity and solve for y ~ v, /S%.

Figure 1 shows T'/T, curves as a function of v for a
variety of a. The curves are "U” or ”V”-shaped. ~(7T')
is a double valued function: to each value of 7' belongs
two values of v. Each curve have a minimum which de-
fines the transition energy. Solving 9(T/Ty)/0y = 0,
one finds 74 = 1/y/a. All normalized curves T'/T, =
(T/Ts)/(Ty/Ts) for a particular value of « have the iden-
tical shape, independent of ;.

For energy less than the transition value, the revolu-
tion period behaves as if dominated by changing particle
speed; and above transition behaves as if dominated by
path length. If k is sufficiently large and ~; sufficiently
high, this apparent behaviour persists even in the relativis-
tic regime. The difficulty is of course getting k sufficiently
large without compromising the transverse optics. Con-
trastingly, using moderate values of field index produces a
machine which can in principle cover the transition from
non-relativistic to relativistic - with constant RF.

For brevity, let vs1 = 71 and 53 = 2 be two energies
having the same revolution period; there is a continuum
of such doublets. We shall adhere to the convention that
Y1 < ¢ < 72. A certain doublet is chosen to be the syn-
chronous reference when we set the radio frequency (RF)
to be co-periodic with the orbit period T(v1) = T(7v2).
Once this is chosen F, E'5 become fixed points of the mo-
tion. Both values of the synchronous E; are equally valid!
It is a little arbitrary, but we choose to work with the lower
E; because it exists in the narrow range 1 < v51 < ;.

The general features of the T'/T', curves in Fig. 1 are
a very steep rise as 7 — 1, and a long slow ramp for
v > <. When selecting reference doublets, this has the
consequence that as y; — 1, so 72 — co. Thus the range
of acceleration is unbounded. But this range is illusory, and
corresponds to a linac-like regime with prodigious voltage
requirement.
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Figure 2: Energy (vy) versus RF phase (¢); case 1 (upper)
and case 2 (lower)

Hamiltonian
(P/Ps)~ eV cos ¢

H(E.P.¢) = —Eh+ h(PF,) % G+ o

3)
Because of the FFAG scaling property, the Hamiltonian is
invariant whether we use E; or E» for the synchronous en-
ergy. We set h times their common revolution frequency
equal to the radio frequency, where h is the harmonic num-
ber. These two energies are either side of transition; so,
during acceleration, the direction of phase slip for the en-
tire beam reverses twice.

Our task would appear to be to maximize the accelera-
tion range for a given value of the voltage per turn V. Fig-
ures 2,5 show examples of phase space contours. Serpen-
tine acceleration in the S-shape channel between two RF
buckets offset in energy can be greater than the range (bot-
tom to top) within a single RF bucket. We take the range
to be formed of the sum of three phase space arcs: (i) from
the injection energy E; to the first synchronous energy Ei;
(ii) a path between E; and FE»; and (iii) from the second
synchronous energy to the extraction energy F,.

Minimum Voltage

The condition to connect the two fixed points £y and E
by a phase space path of zero width is obtained by equating
the two Hamiltonians H (F1, Py, 7) = H(FE2, P,0) and
solving for voltage per turn:

— -1
eVo :wh(% Y1) (12 — 1) . 4)
Ey 1n72(1 + )
This is a very significant relation. If ay;y2 > 1 this cor-
responds to acceleration in a linac-like regime (case 1) in
ISBN 978-3-95450-128-1
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which Ay /v > land eVy/Ey — (y2—71)arh/(1 + «).
This is a very few turn acceleration regime, and there is
little point employing an FFAG ring unless the particles
are very short lived. The required voltage is prodigious:
order the rest mass energy per turn; this may be accept-
able for leptons but less so for hadrons. Contrastingly,
if ay172 — 1then V' — 0. In principle, this implies
AE/eV — oo; but Ay/y — 0. This corresponds to
acceleration in a ring-like regime (case 3), with tiny volt-
age and many turns but with a small range. Neverthe-
less, by fine tuning of parameters, this feature may be
exploited to give a limited multi-turn acceleration (cases
2,4.,5). ay1y2 = 1 has the single solution is y1y2 = 4.
For all other values such that T'(y1) = T'(v2), ay1y2 > 1
and rises progressively rapidly because 75 increases more
quickly than ; falls. Clearly, small « is advantageous. The
phase acceptance opens from zero to cos ¢ = [2Vp/V —1].

Acceleration Range

The extraction energy is obtained by equating
H(E,,P,,m) = H(E3, P,0), writing E, = Ey + dE,,
and solving for the increment

SE2 ~ (2V/7h)/[+1/Es — E3/P3(1 — a)]

The injection energy is obtained by equating
H(E,“P,“O) = H(E17P1,7T), writing F; = F; — 0FE;,
and solving for the increment

SE? ~ (2V/mh)/[-1/Ey + E1/P(1 — a))

Typically 6F; < 0E,: 0E; ~ Picy/2 and 0E, ~
F5+/2. The energy range of the machine is

which is expressible solely in terms of Fi, Fs. But Es
is expressible in terms of Fy: E(E;) is the solution of
T(E;) = T(E3). Hence there is an expression for the
energy range in terms of Fy, V, a.

Figure 3 shows the normalized acceleration range
AE/E; = Avy/v; (red), the voltage eVy/ Ey (yellow), and
AFE/eVy (blue) which is roughly the number of turns, as
a function of 4 for a particular o (case 4). As v, — 1
the range becomes unbounded; and as y; — < the range
shrinks to zero. The foregoing remarks have prepared us
for this. Contrary to expectations, AF/eV is not a suitable
figure of merit upon which to base optimization. While
AFE/eV rises, the acceleration range falls dramatically; the
voltage per turn falls even more precipitously. These be-
haviours are common to all values of «.

OPTIMIZATION

We know that v,y — 1 (large range, large voltage, few
turns) and 51 — ¢ (small range, tiny voltage, many
turns) are both poor choices for the synchronous energy.
But one may speculate that useful working points exit be-
tween these extremes. Our approach is to take combina-
tions [y1,72] which satisfy T'(y1) = T(72) exactly, and
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Figure 3: Range per volt (AE/eV,)/10 (blue), total range
AE/E; (red), and minimum voltage eVy/Ey (yellow).
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Figure 4: Normalized range (left) and required voltage
(right) as function of «, 7y,1. Range of a = [0.1,0.5].

roughly satisfy 7192 ~ 2. The optimization amounts to
scanning o, Ys1.

Figure 4 shows that maximizing the energy range and
minimizing the voltage are contradictory efforts. Thus one
must choose, for given index «, either the range and accept
the voltage, or place a limit on voltage per turn and accept
the energy range. Alternatively, for given range and volt-
age values one may search for the (<, vs) combination that
leads to the largest value of « (i.e. smallest value of k) and
hence the easiest-to-realize magnetic lattice.

Figure 4 exemplifies the challenge. Let p, v be target val-
ues. Optimization corresponds to finding the intersection of
the two surfaces: (Avy/v:)/p > 1 and (eVy/Ep)/v < 1in
the (<, vs1) plane, subject to greatest .

Examples

We present five examples, each with different design ob-
jectives (p, v). The first case is linac-like, with large range
and voltage. The third case is ring-like, with small volt-
age and many turns. The fifth case is a toy accelerator that
spans the Newtonian to relativistic region. The second and
fourth cases are intermediate with similar number of turns,
but with opposing tendency of « and eV;/ Ep.
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Figure 5: Energy () versus RF phase (¢); case 2 (upper)
and case 5 (lower).

CONCLUSION

The scaling FFAG proves to be a versatile platform for
exploiting serpentine acceleration. However, the perfor-
mance is generally poor: either the voltages are large and
the turns are few, or the voltages and acceleration range are
small. In either case, other accelerator types (linac and cy-
clotron, respectively) would be more effective. Moreover,
there is no obvious figure of merit upon which to base op-
timization. Nevertheless, careful optimization (based on
controlling ays1ys2) can produce intermediates cases with
credible parameters that have the appeal of acceleration
over the Newtonian (y = 1) to relativistic regime (y > 1).
Note, these conclusions do not apply to scaling FFAGs with
swept RF; they are a class distinct from the considerations
above.
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case « Vsl Tt AE/E; | AE/eVy | eVo/Ey Ay Vs2 Ying
1 0.093567 | 1.6502 | 3.2692 10. 16.35 2.0 32.38 14.77 1.0
2 0.134416 | 2.0249 | 2.7276 2.0 36.37 0.150 5.462 4.419 1.3061
3 0.137074 | 2.42703 | 2.7010 1.0 90.03 0.030 2.699 3.304 1.7683
4 0.312317 | 1.5461 | 1.7894 1.0 35.79 0.050 1.7885 | 2.2788 | 1.2079
5 0.563233 | 1.16276 | 1.3325 0.750 24.98 0.040 1.000 | 1.64715 | 1.0269
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