Author: Solhju, R.
Paper Title Page
TUPSH007 Improvement in Design of 10 MeV AVF Cyclotron Magnet 233
 
  • R. Solhju, H. Afarideh, B. Mahdian
    AUT, Tehran, Iran
  • J.-S. Chai, M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  Design study of a 10 MeV baby cyclotron which accelerates H− ions is started in March, 2012 at Amirkabir University of Technology (AUT). Up to this point, conceptual design of the cyclotron magnet is finished. This process has been done in two steps: initial design and then optimization. After finishing the initial design of the magnet by CST software and adopting hard-edge approximation for finding the pole tip, an optimization process has been followed to smooth the pole edge in order to decrease the tension in sharp edges of the pole. In this paper, we are going to explain about the optimization process in details. Actually, we tried to fit the best curve at the pole edges of the magnet with goal of having minimum magnetic field error. Also a short report of results which was obtained before optimization is provided here. Precision of this design is ensured by checking the magnetic field and beam dynamic parameters during the optimization.  
 
TUPSH008 Conceptual Design of the 100 MeV Separated Sector Cyclotron 236
 
  • B. Mahdian, H. Afarideh, R. Solhju
    AUT, Tehran, Iran
  • J.-S. Chai, M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  The 100 MeV separated sector cyclotron was designed at Amirkabir University of Technology (AUT), which was aimed for various applications including radioactive ion-beam (RIB) production and proton therapy. It has four separated sector magnets. The cyclotron magnet design was based on an iterative process starting from a simple model that requires the vision of the complete cyclotron and the possibility of integration of all subsystems. By computer simulation with the 3D (CST) and 2D (POSSION) codes, principle parameters of the cyclotron magnet system were estimated (pole radius 180 cm, outer diameter 640 cm, height 300 cm). The results showed that the isochronous deviations between simulated values and the calculation one are smaller than 5 Gauss at most radii and therefore fulfilled the requirements. This work has been done with high accuracy which is proved by particle trajectories and considered mesh range. It has been concluded that it can be possible to design and develop this high energy cyclotron by introducing simple model without using trim and harmonic coils.