Author: Johnson, R.R.
Paper Title Page
WEPPT028 Proposal for High Power Cyclotrons Test Site in Catania 378
  • L. Calabretta, D. Campo, L. Celona, L. Cosentino, C. Cui, G. Gallo, D. Rifuggiato
    INFN/LNS, Catania, Italy
  • J.R. Alonso, W.A. Barletta, A. Calanna, D. Campo, J.M. Conrad
    MIT, Cambridge, Massachusetts, USA
  • R.R. Johnson
    BCSI, Vancouver, BC, Canada
  • L. AC. Piazza
    INFN/LNL, Legnaro (PD), Italy
  The IsoDAR and DAEδALUS experiments will use cyclotrons to deliver high intensity (10 mA peak current) proton beams to neutrino-producing targets. To achieve these very high currents, we plan to inject and accelerate molecular H2+ ions in the cyclotrons. To understand high intensity H2+ injection into the central region of a compact cyclotron, and to benchmark space-charge dominated simulation studies, central-region tests are being conducted. Building on the first experiments at Best Cyclotrons, Vancouver (Abstract 1261), a larger-scale test cyclotron will be built at INFN-LNS in Catania. This cyclotron will be designed for 7 MeV/n (Q/A = 0.5; H2+ or He++). After the first year of operation dedicated at optimization of the central region for the injection of high intensity Q/A = 0.5 beams, the cyclotron will be modified to allow the acceleration of H up to an energy of 28 MeV. The main characteristics of the machine and the planned test stand will be presented.